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On selecting leaves with disjoint neighborhoods in embedded trees

L Intoduction

Introduction

This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.
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This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.

Part of an algorithm to construct in deterministic linear time the:
Voronoi Diagram of points in convex position, given the convex hull.

Can also be extended to other Voronoi diagrams with tree structure:
— Farthest point VD, given the convex hull.
— Update of a VD, after deleting a point.
— Order-k VD, given the order-(k-1) VD.
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Applications

Applications

m The algorithmic scheme has been used to derive linear time
algorithms for many problems, e.g.:

— Medial axis of a simple polygon in O(n).
[Chin et al. - DCG 1999]

— Order-k VD in O(nk? + nlog n).
[D.T. Lee - IEEE Trans. Comput. 1982]

— Hamiltonian Abstract VD in O(n).
[Klein and Lingas - ISAAC 1994]

— Forest-like Abstract VD in O(n).
[Bohler et al. - Comp. Geom. 2014]
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Let 7 be an embedded binary tree with n leaves where:

i) Each leaf of T has a neighborhood - (a subtree of T).

ii) Topologically consecutive leaves have disjoint neighborhoods.
Then:

i3> %n leaves with pairwise disjoint neighborhoods.
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Then:

i3> 1—10m marked leaves with pairwise disjoint neighborhoods.

i) > {5m marked leaves can be found in O(rlpn) time, for any p € (0, 1).

Remarks:

m If the solution is required to be a constant fraction of m, then it
suffices to choose any constant for p € (0,1).

m If pis a constant, then the algorithm has O(n) time complexity.

4/20



On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
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Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
construction of order-k, etc.) remain open for:

m Voronoi diagram of non-point sites
...even for simple sites as circles, line segments, etc.

m Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:

— Construction of the farthest line-segment VD.
[Khramtcova & Papadopoulou - arXiv 2017]

— Update of an abstract VD, after the deletion of a site.
[Junginger & Papadopoulou - SoCG 2018]

Suggests that, to potentially apply the linear-time framework...

... We first need this generalized combinatorial result.
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On selecting leaves with disjoint neighborhoods in embedded trees
L outline

Outline of results

1. Present some necessary preliminaries.

2. Show the first part of the theorem, the existence.

3. Show the second part of the theorem, the algorithm.
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On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T

Remark:

Original: All internal nodes get labeled.
Generalized: Only a subset of the internal
nodes get labeled.

Idea:
Pass the information of the marked leaves to a
subset of T to resemble [Aggarwal et al. 1987].

T o Comb node
x Junction node
o Leaf node
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Components

Components

m L-component

m 5-component

Observations:
m Components are disjoint subtrees of 7.
m Each L-component has 2 marked leaves.
m Each 5-component has 5 marked leaves.
m Not every node belongs to a component.
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We want to prove:

Lemma - Existence

At least %m marked leaves of 7 have pairwise disjoint neighborhoods.
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Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:
—> At least 1 out of 5 in every 5-component.
— At least 1 out of 2 in every L-component.

Each spine has at most 4 ungrouped Comb nodes.

For every 8 ungrouped Comb nodes there exists at least 1 L-component.

Combining the above, we conclude:

Lemma - Existence

At least %m marked leaves have pairwise disjoint neighborhoods.
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Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:

— A component can have ©(n) size.

— A confined neighborhood can have ©(n) size.

— A single neighborhood can require ©(n) time to be identified.

Introduce a parameter p € (0,1) in the algorithm.
Trade-off between time complexity and number of selected leaves.
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2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
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If t is visited then:
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If nh(¢;) is found and
r, t are not visited then:
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Idea:
Lower bound the number of intervals that do not have many unmarked
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Intervals
I’..’i.\‘.\l

Lemma - Pigeonhole /,0’. .\

Let M, be the number of marked leaves whose T ,
intervals have at most x unmarked leaves, x € N. ‘ i
Then [M,| = X;—l—f_""lm holds. e"\ ()
i [ ]
a7
€l+1

c is the ratio between unmarked and marked leaves, ¢ = [%1
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L Results
= Algorithm Correctness

Correctness proof

Idea:
Upper bound the size of a confined neighborhood by the number of

unmarked leaves in the intervals related to the component.

Lemma - Size of confined neighborhoods

Let K be component and a marked leaf ¢ with neighborhood nh(¢)
confined K. Then, |nh(¢)| < 100k.

0k is the maximum size of intervals related to the component K. 18/20
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L Results

l—Algoritl'lm time complexity

Time complexity proof

Lemma -Time complexity

The algorithm has time complexity O(lflpn).

m There are ©(m) components.

m For each component, the algorithm does a fixed number of steps
(< 10z).

By using z = [106-‘ = ©(15;), the claim follows.

1—p
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Conclusion

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7 has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:

i3> 55 m marked leaves with pairwise disjoint neighborhoods.

i) > 10m marked leaves can be found in O(—n) time, p € (0,1).
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L conclusion

Conclusion

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7 has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:

i3> 55 m marked leaves with pairwise disjoint neighborhoods.

i) > 10m marked leaves can be found in O(—n) time, p € (0,1).

Expect it to be helpful in designing deterministic linear time algorithms
for problems related to abstract Voronoi diagrams and other
generalized Voronoi diagrams.
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