On selecting leaves with disjoint neighborhoods in embedded trees

Kolja Junginger Ioannis Mantas Evanthia Papadopoulou

Faculty of Informatics, USI Università della Svizzera italiana, Lugano, Switzerland

14/2/2019 - IIT Kharagpur, India - CALDAM 2019

Introduction

This work focuses on a **generalization** of a **combinatorial result** by A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in **linear time** a **constant fraction** of the leaves.

Introduction

This work focuses on a **generalization** of a **combinatorial result** by A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant fraction of the leaves.

Part of an algorithm to construct in deterministic **linear time** the: Voronoi Diagram of points in convex position, given the convex hull.

Introduction

This work focuses on a **generalization** of a **combinatorial result** by A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in **linear time** a **constant fraction** of the leaves.

Part of an algorithm to construct in deterministic **linear time** the: **Voronoi Diagram of points in convex position**, given the convex hull.

Can also be extended to other Voronoi diagrams with **tree structure**:

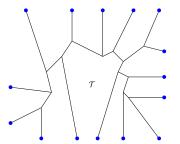
- → Farthest point VD, given the convex hull.
- → Update of a VD, after deleting a point.
- \rightarrow Order-k VD, given the order-(k-1) VD.

Applications

- The algorithmic scheme has been used to derive linear time algorithms for many problems, e.g.:
 - → **Medial axis** of a simple polygon in O(n). [Chin et al. DCG 1999]
 - → Order-k VD in $O(nk^2 + n \log n)$. [D.T. Lee - IEEE Trans. Comput. 1982]
 - \rightarrow Hamiltonian Abstract VD in O(n). [Klein and Lingas ISAAC 1994]
 - \rightarrow Forest-like Abstract VD in O(n). [Bohler et al. Comp. Geom. 2014]

Theorem [Aggarwal et al. 1987]

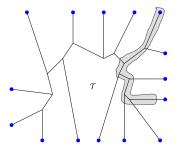
Let T be an embedded binary tree with n leaves



Theorem [Aggarwal et al. 1987]

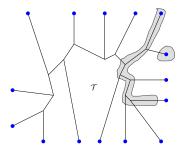
Let \mathcal{T} be an embedded binary tree with n leaves where:

i) Each leaf of ${\mathcal T}$ has a neighborhood - (a subtree of ${\mathcal T}$).



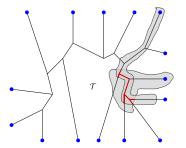
Theorem [Aggarwal et al. 1987]

- i) Each leaf of \mathcal{T} has a neighborhood (a subtree of \mathcal{T}).
- ii) Topologically consecutive leaves have disjoint neighborhoods.



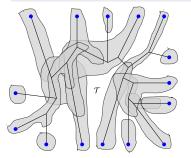
Theorem [Aggarwal et al. 1987]

- i) Each leaf of \mathcal{T} has a neighborhood (a subtree of \mathcal{T}).
- ii) Topologically consecutive leaves have disjoint neighborhoods.



Theorem [Aggarwal et al. 1987]

- i) Each leaf of $\mathcal T$ has a neighborhood (a subtree of $\mathcal T$).
- $\it ii)$ Topologically consecutive leaves have disjoint neighborhoods.



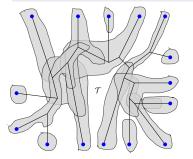
Theorem [Aggarwal et al. 1987]

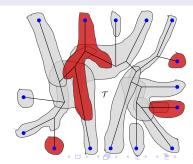
Let \mathcal{T} be an embedded binary tree with n leaves where:

- i) Each leaf of \mathcal{T} has a neighborhood (a subtree of \mathcal{T}).
- $\it ii)$ Topologically consecutive leaves have disjoint neighborhoods.

Then:

i) $\exists \geq \frac{1}{10}n$ leaves with pairwise disjoint neighborhoods.





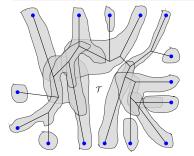
Theorem [Aggarwal et al. 1987]

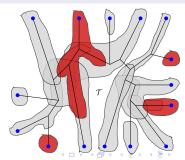
Let \mathcal{T} be an embedded binary tree with n leaves where:

- i) Each leaf of \mathcal{T} has a neighborhood (a subtree of \mathcal{T}).
- ii) Topologically consecutive leaves have disjoint neighborhoods.

Then:

- i) $\exists \geq \frac{1}{10}n$ leaves with pairwise disjoint neighborhoods.
- ii) These leaves can be found in O(n) time.





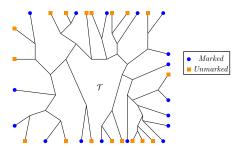
└─ Original algorithm

Our result

Theorem - Generalized

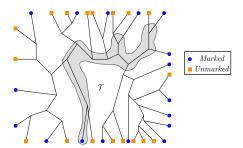
Let T be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.



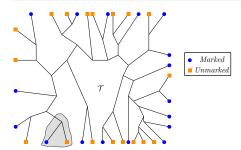
Theorem - Generalized

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.



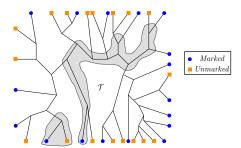
Theorem - Generalized

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.



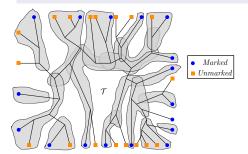
Theorem - Generalized

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.
- iii) Topologically consecutive marked leaves have disjoint neighborhoods.



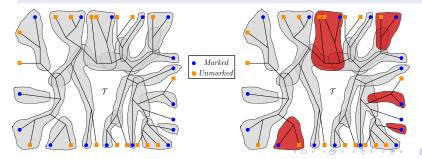
Theorem - Generalized

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.
- iii) Topologically consecutive marked leaves have disjoint neighborhoods.



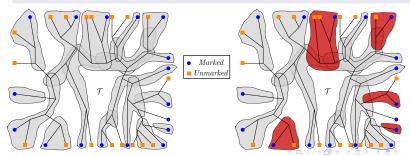
Theorem - Generalized

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.
- iii) Topologically consecutive marked leaves have disjoint neighborhoods. Then:
- i) $\exists \geq \frac{1}{10} m$ marked leaves with pairwise disjoint neighborhoods.



Theorem - Generalized

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.
- iii) Topologically consecutive marked leaves have disjoint neighborhoods. Then:
- i) $\exists \geq \frac{1}{10} m$ marked leaves with pairwise disjoint neighborhoods.
- $ii) \ge \frac{\rho^{2D}}{10}m$ marked leaves can be found in $O(\frac{1}{1-\rho}n)$ time, for any $\rho \in (0,1)$.



Theorem - Generalized

Let \mathcal{T} be an embedded binary tree with n leaves where:

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.
- iii) Topologically consecutive marked leaves have disjoint neighborhoods. Then:
- i) $\exists \geq \frac{1}{10}m$ marked leaves with pairwise disjoint neighborhoods.
- $|ii| \ge \frac{p}{10}m$ marked leaves can be found in $O(\frac{1}{1-p}n)$ time, for any $p \in (0,1)$.

Remarks:

■ If the solution is required to be a constant fraction of m, then it suffices to choose any constant for $p \in (0,1)$.

Theorem - Generalized

Let \mathcal{T} be an embedded binary tree with n leaves where:

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.
- iii) Topologically consecutive marked leaves have disjoint neighborhoods. Then:
- i) $\exists \geq \frac{1}{10}m$ marked leaves with pairwise disjoint neighborhoods.
- $ii) \geq \frac{p}{10}m$ marked leaves can be found in $O(\frac{1}{1-p}n)$ time, for any $p \in (0,1)$.

Remarks:

- If the solution is required to be a constant fraction of m, then it suffices to choose any constant for $p \in (0,1)$.
- If p is a constant, then the algorithm has O(n) time complexity.

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site, construction of order-k, etc.) remain open for:

- Voronoi diagram of non-point sites ...even for simple sites as circles, line segments, etc.
- Abstract Voronoi diagrams

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site, construction of order-k, etc.) remain open for:

- Voronoi diagram of non-point sites ...even for simple sites as circles, line segments, etc.
- Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:

- → Construction of the farthest line-segment VD. [Khramtcova & Papadopoulou - arXiv 2017]
- ightarrow Update of an abstract VD, after the deletion of a site. [Junginger & Papadopoulou SoCG 2018]

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site, construction of order-k, etc.) remain open for:

- Voronoi diagram of non-point sites ...even for simple sites as circles, line segments, etc.
- Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:

- → Construction of the farthest line-segment VD. [Khramtcova & Papadopoulou - arXiv 2017]
- \rightarrow Update of an abstract VD, after the deletion of a site. [Junginger & Papadopoulou - SoCG 2018]

Suggests that, to potentially apply the linear-time framework... ... We first need this **generalized combinatorial result.**

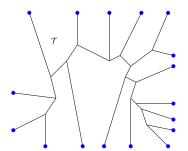
Outline of results

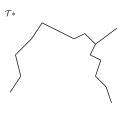
1. Present some necessary **preliminaries**.

2. Show the first part of the theorem, the **existence**.

3. Show the second part of the theorem, the **algorithm**.

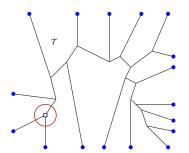
Let \mathcal{T}^* be the tree obtained after **deleting all leaves** from \mathcal{T} .

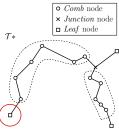




Let \mathcal{T}^* be the tree obtained after **deleting all leaves** from \mathcal{T} . A node $u \in \mathcal{T}$ is called:

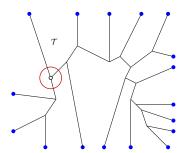
Leaf node if deg(u) = 1 in \mathcal{T}^* .

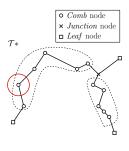




Let \mathcal{T}^* be the tree obtained after **deleting all leaves** from \mathcal{T} . A node $u \in \mathcal{T}$ is called:

- **Leaf** node if deg(u) = 1 in \mathcal{T}^* .
- **Comb** node if deg(u) = 2 in \mathcal{T}^* .

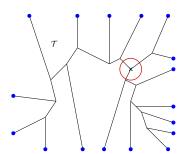


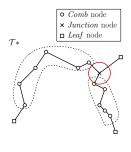


Let \mathcal{T}^* be the tree obtained after **deleting all leaves** from $\mathcal{T}.$

A node $u \in \mathcal{T}$ is called:

- **Leaf** node if deg(u) = 1 in \mathcal{T}^* .
- **Comb** node if deg(u) = 2 in \mathcal{T}^* .
- **Junction** node if deg(u) = 3 in \mathcal{T}^* .



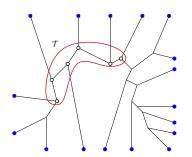


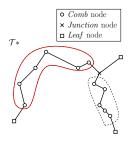
Let \mathcal{T}^* be the tree obtained after **deleting all leaves** from $\mathcal{T}.$

A node $u \in \mathcal{T}$ is called:

- **Leaf** node if deg(u) = 1 in \mathcal{T}^* .
- **Comb** node if deg(u) = 2 in \mathcal{T}^* .
- **Junction** node if deg(u) = 3 in \mathcal{T}^* .

A **spine** is a maximal sequence of consecutive *Comb* nodes.



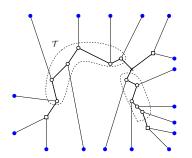


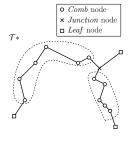
Let \mathcal{T}^* be the tree obtained after **deleting all leaves** from $\mathcal{T}.$

A node $u \in \mathcal{T}$ is called:

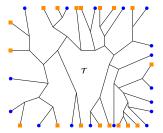
- **Leaf** node if deg(u) = 1 in \mathcal{T}^* .
- **Comb** node if deg(u) = 2 in \mathcal{T}^* .
- **Junction** node if deg(u) = 3 in \mathcal{T}^* .

A **spine** is a maximal sequence of consecutive *Comb* nodes.

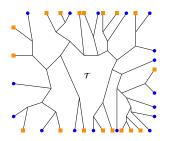




Labeling the tree ${\mathcal T}$

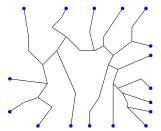


Labeling the tree ${\cal T}$

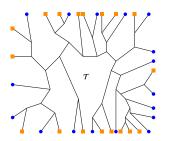


Transformation:

1. Delete unmarked leaves.

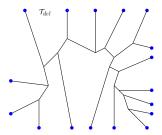


Labeling the tree ${\mathcal T}$

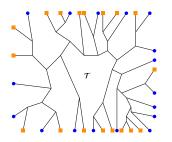


Transformation:

- 1. Delete unmarked leaves.
- 2. Contract degree 2 nodes. Obtain tree \mathcal{T}_{del} .

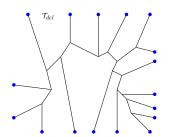


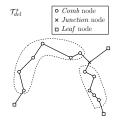
Labeling the tree ${\mathcal T}$



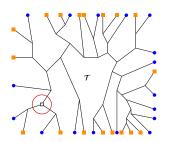
Transformation:

- 1. Delete unmarked leaves.
- 2. Contract degree 2 nodes. Obtain tree \mathcal{T}_{del} .
- 3. Use \mathcal{T}_{del}^* to characterize nodes of \mathcal{T} .





Labeling the tree ${\cal T}$

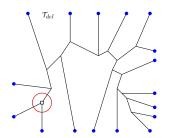


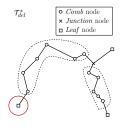
Transformation:

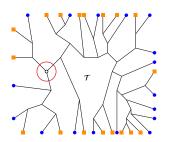
3. Use \mathcal{T}_{del}^* to characterize nodes of \mathcal{T} .

A node $u \in \mathcal{T}$ is called:

■ Leaf: if $u \in \mathcal{T}^*_{\textit{del}}$ and deg(u) = 1 in $\mathcal{T}^*_{\textit{del}}$.





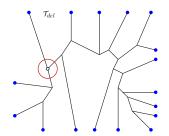


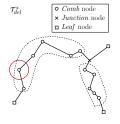
Transformation:

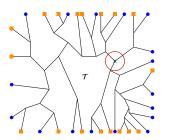
3. Use \mathcal{T}_{del}^* to characterize nodes of \mathcal{T} .

A node $u \in \mathcal{T}$ is called:

- Leaf: if $u \in \mathcal{T}^*_{\textit{del}}$ and deg(u) = 1 in $\mathcal{T}^*_{\textit{del}}$.
- Comb: if $u \in \mathcal{T}_{del}^*$ and deg(u) = 2 in \mathcal{T}_{del}^* .





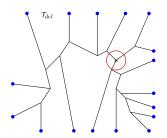


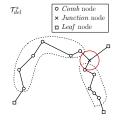
Transformation:

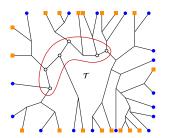
3. Use \mathcal{T}_{del}^* to characterize nodes of \mathcal{T} .

A node $u \in \mathcal{T}$ is called:

- Leaf: if $u \in \mathcal{T}_{del}^*$ and deg(u) = 1 in \mathcal{T}_{del}^* .
- Comb: if $u \in \mathcal{T}_{del}^*$ and deg(u) = 2 in \mathcal{T}_{del}^* .
- Junction: if $u \in \mathcal{T}_{del}^*$ and deg(u) = 3 in \mathcal{T}_{del}^* .







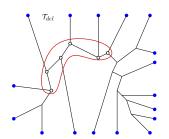
Transformation:

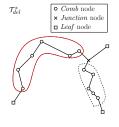
3. Use \mathcal{T}_{del}^* to characterize nodes of \mathcal{T} .

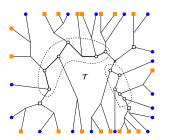
A node $u \in \mathcal{T}$ is called:

- Leaf: if $u \in \mathcal{T}^*_{\textit{del}}$ and deg(u) = 1 in $\mathcal{T}^*_{\textit{del}}$.
- Comb: if $u \in \mathcal{T}_{del}^*$ and deg(u) = 2 in \mathcal{T}_{del}^* .
- Junction: if $u \in \mathcal{T}_{del}^*$ and deg(u) = 3 in \mathcal{T}_{del}^* .

Spine: A sequence of consecutive Comb nodes.

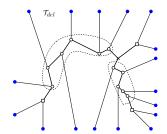


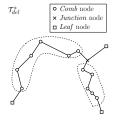


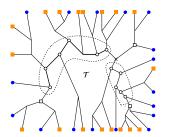


Remark:

Original: All internal nodes get labeled. Generalized: Only a subset of the internal nodes get labeled.





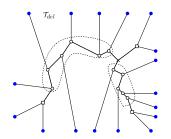


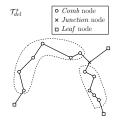
Remark:

Original: All internal nodes get labeled. Generalized: Only a subset of the internal nodes get labeled.

Idea:

Pass the information of the marked leaves to a subset of \mathcal{T} to resemble [Aggarwal et al. 1987].





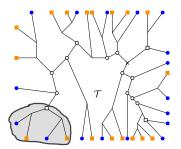
Preliminaries

Components

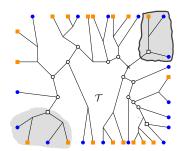
Components

Define **two types of components**, which are subtrees of \mathcal{T} .

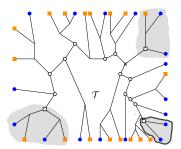
Define **two types of components**, which are subtrees of \mathcal{T} .



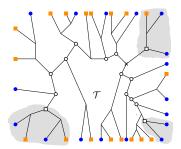
Define **two types of components**, which are subtrees of \mathcal{T} .



Define two types of components, which are subtrees of \mathcal{T} .

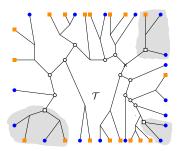


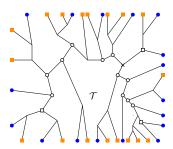
Define **two types of components**, which are subtrees of \mathcal{T} .



Define **two types of components**, which are subtrees of \mathcal{T} .

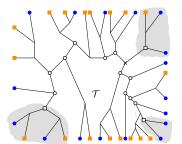
L-component: The Leaf node and the 2 subtrees hanging off that node. Subdivide each spine into groups of 5 Comb nodes.





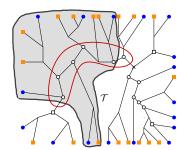
Define two types of components, which are subtrees of \mathcal{T} .

L-component: The Leaf node and the 2 subtrees hanging off that node.



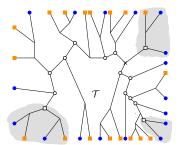
Subdivide each spine into groups of 5 Comb nodes.

5-component: Part of the spine containing the 5 Comb nodes and the subtress hanging off that.



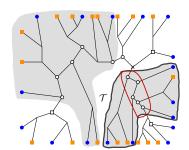
Define two types of components, which are subtrees of \mathcal{T} .

L-component: The Leaf node and the 2 subtrees hanging off that node.



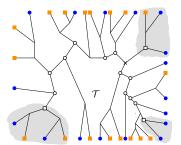
Subdivide each spine into groups of 5 Comb nodes.

5-component: Part of the spine containing the 5 Comb nodes and the subtress hanging off that.



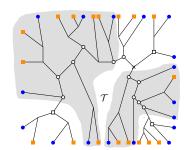
Define two types of components, which are subtrees of \mathcal{T} .

L-component: The Leaf node and the 2 subtrees hanging off that node.



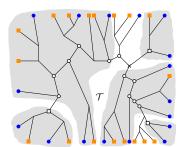
Subdivide each spine into groups of 5 Comb nodes.

5-component: Part of the spine containing the 5 Comb nodes and the subtress hanging off that.



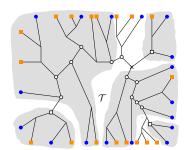
Define **two types of components**, which are subtrees of T.

L-component: The Leaf node and the 2 subtrees hanging off that node.

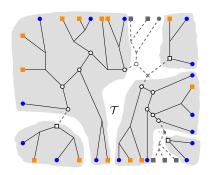


Subdivide each spine into groups of 5 Comb nodes.

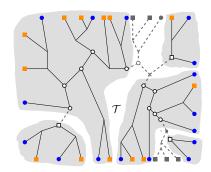
5-component: Part of the spine containing the 5 Comb nodes and the subtress hanging off that.



- L-component
- 5-component



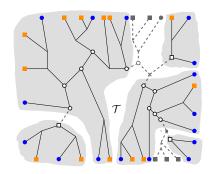
- L-component
- 5-component



Observations:

lacksquare Components are disjoint subtrees of \mathcal{T} .

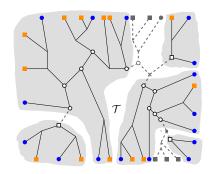
- L-component
- 5-component



Observations:

- lacksquare Components are disjoint subtrees of \mathcal{T} .
- Each *L*-component has 2 marked leaves.
- Each 5-component has 5 marked leaves.

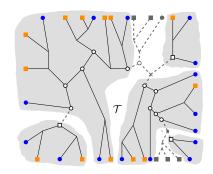
- L-component
- 5-component



Observations:

- lacksquare Components are disjoint subtrees of \mathcal{T} .
- Each *L*-component has 2 marked leaves.
- Each 5-component has 5 marked leaves.
- Not every node belongs to a component.

- L-component
- 5-component



Observations:

- lacksquare Components are disjoint subtrees of \mathcal{T} .
- Each *L*-component has 2 marked leaves.
- Each 5-component has 5 marked leaves.
- Not every node belongs to a component.
- A component can have $\Theta(n)$ nodes.

☐ Existence

Existence

We want to prove:

Lemma - Existence

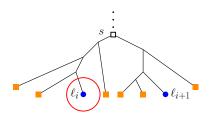
At least $\frac{1}{10}m$ marked leaves of $\mathcal T$ have pairwise disjoint neighborhoods.

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

Lemma 1

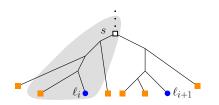
In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.



For an **L-component**: consider $nh(\ell_i)$.

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

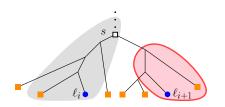


For an **L-component**: consider $nh(\ell_i)$.

Case 1: If Leaf node $s \in nh(\ell_i)$

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

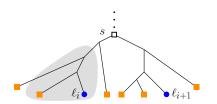


For an **L-component**: consider $nh(\ell_i)$.

Case 1: If Leaf node $s \in nh(\ell_i)$ $\Rightarrow nh(\ell_{i+1})$ is confined.

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

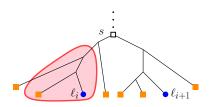


For an **L-component**: consider $nh(\ell_i)$.

Case 2: If Leaf node $s \notin nh(\ell_i)$

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.



For an **L-component**: consider $nh(\ell_i)$.

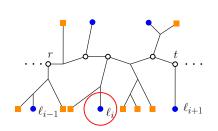
Case 2: If Leaf node $s \notin nh(\ell_i)$ $\Rightarrow nh(\ell_i)$ is confined.

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

Lemma 1

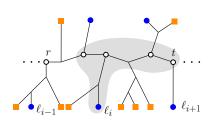
In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.



For a **5-component**: consider $nh(\ell_i)$.

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

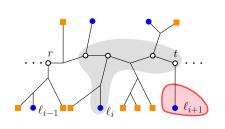


For a **5-component**: consider $nh(\ell_i)$.

Case 1: If Comb node $t \in nh(\ell_i)$

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

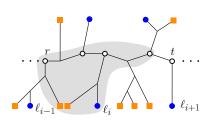


For a **5-component**: consider $nh(\ell_i)$.

Case 1: If Comb node $t \in nh(\ell_i)$ $\Rightarrow nh(\ell_{i+1})$ is confined.

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

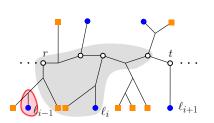


For a **5-component**: consider $nh(\ell_i)$.

Case 2: If Comb node $r \in \mathit{nh}(\ell_i)$

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

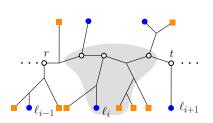


For a **5-component**: consider $nh(\ell_i)$.

Case 2: If Comb node $r \in nh(\ell_i)$ $\Rightarrow nh(\ell_{i-1})$ is confined.

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.

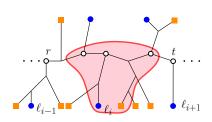


For a **5-component**: consider $nh(\ell_i)$.

Case 3: If Comb nodes $r, t \notin nh(\ell_i)$

Lemma 1

In every component, there a exists at least one marked leaf ℓ with neighborhood $nh(\ell)$ confined to that component.



For a **5-component**: consider $nh(\ell_i)$.

Case 3: If Comb nodes $r, t \notin nh(\ell_i)$ $\Rightarrow nh(\ell_i)$ is confined.

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:

- \rightarrow At least 1 out of 5 in every 5-component.
- \rightarrow At least 1 out of 2 in every *L*-component.

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:

- \rightarrow At least 1 out of 5 in every 5-component.
- \rightarrow At least 1 out of 2 in every *L*-component.

Observation

Each spine has at most 4 ungrouped Comb nodes.

Lemma 2

For every 8 ungrouped *Comb* nodes there exists at least 1 *L*-component.

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:

- \rightarrow At least 1 out of 5 in every 5-component.
- \rightarrow At least 1 out of 2 in every *L*-component.

Observation

Each spine has at most 4 ungrouped Comb nodes.

Lemma 2

For every 8 ungrouped *Comb* nodes there exists at least 1 *L*-component.

Combining the above, we conclude:

Lemma - Existence

At least $\frac{1}{10}m$ marked leaves have pairwise disjoint neighborhoods.

Goal: Design an algorithm to return a fraction of the marked leaves with pairwise disjoint neighborhoods.

Goal: Design an algorithm to return a fraction of the marked leaves with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked leaves in the topological ordering.

Goal: Design an algorithm to return a fraction of the marked leaves with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked leaves in the topological ordering. This implies that:

 \rightarrow A component can have $\Theta(n)$ size.

Goal: Design an algorithm to return a fraction of the marked leaves with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked leaves in the topological ordering. This implies that:

- \rightarrow A component can have $\Theta(n)$ size.
- \rightarrow A confined neighborhood can have $\Theta(n)$ size.

Goal: Design an algorithm to return a fraction of the marked leaves with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked leaves in the topological ordering. This implies that:

- \rightarrow A component can have $\Theta(n)$ size.
- \rightarrow A confined neighborhood can have $\Theta(n)$ size.
- \rightarrow A single neighborhood can require $\Theta(n)$ time to be identified.

Goal: Design an algorithm to return a fraction of the marked leaves with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked leaves in the topological ordering. This implies that:

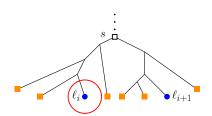
- \rightarrow A component can have $\Theta(n)$ size.
- \rightarrow A confined neighborhood can have $\Theta(n)$ size.
- \rightarrow A single neighborhood can require $\Theta(n)$ time to be identified.

Introduce a parameter $p \in (0,1)$ in the algorithm.

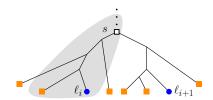
Trade-off between time complexity and number of selected leaves.

- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):

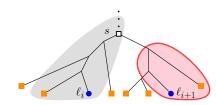
- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 3. If K is L-component then: trace $nh(\ell_i)$ for \leq 4z steps:



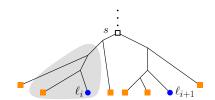
- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 3. If K is L-component then: trace $nh(\ell_i)$ for \leq 4z steps: If s is visited then:



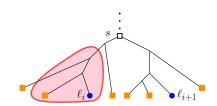
- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 3. If K is L-component then: trace $nh(\ell_i)$ for \leq 4z steps: If s is visited then: select ℓ_{i+1}



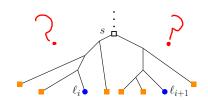
- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 3. If K is L-component then: trace $nh(\ell_i)$ for \leq 4z steps: If s is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and s is not visited then:



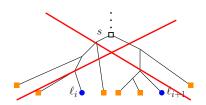
- 1. Label the tree $\ensuremath{\mathcal{T}}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 3. If K is L-component then: trace $nh(\ell_i)$ for \leq 4z steps: If s is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and s is not visited then: select ℓ_i



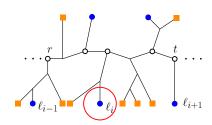
- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 3. If K is L-component then: trace $nh(\ell_i)$ for \leq 4z steps: If s is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and s is not visited then: select ℓ_i If $nh(\ell_i)$ is not found then:



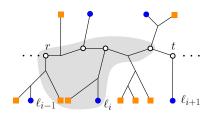
- 1. Label the tree $\ensuremath{\mathcal{T}}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 3. If K is L-component then: trace $nh(\ell_i)$ for \leq 4z steps: If s is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and s is not visited then: select ℓ_i If $nh(\ell_i)$ is not found then: abandon K



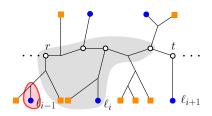
- 1. Label the tree $\ensuremath{\mathcal{T}}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for \leq 10z steps:



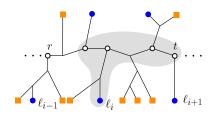
- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for $\leq 10z$ steps: If r is visited then:



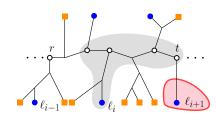
- 1. Label the tree $\ensuremath{\mathcal{T}}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for $\leq 10z$ steps: If r is visited then: select ℓ_{i-1}



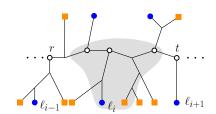
- 1. Label the tree $\ensuremath{\mathcal{T}}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for $\leq 10z$ steps: If r is visited then: select ℓ_{i-1} If t is visited then:



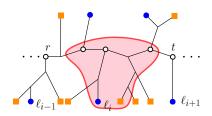
- 1. Label the tree $\ensuremath{\mathcal{T}}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for $\leq 10z$ steps: If r is visited then: select ℓ_{i-1} If t is visited then: select ℓ_{i+1}



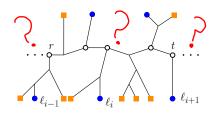
- 1. Label the tree $\ensuremath{\mathcal{T}}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for \leq 10z steps: If r is visited then: select ℓ_{i-1} If t is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and r, t are not visited then:



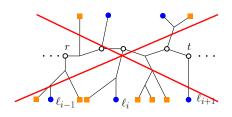
- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for $\leq 10z$ steps: If r is visited then: select ℓ_{i-1} If t is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and r, t are not visited then: select ℓ_i



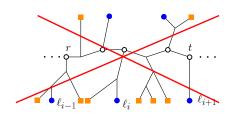
- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for $\leq 10z$ steps: If r is visited then: select ℓ_{i-1} If t is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and r, t are not visited then: select ℓ_i If $nh(\ell_i)$ is not found then:



- 1. Label the tree ${\cal T}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for $\leq 10z$ steps: If r is visited then: select ℓ_{i-1} If t is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and r, t are not visited then: select ℓ_i If $nh(\ell_i)$ is not found then: abandon K



- 1. Label the tree $\ensuremath{\mathcal{T}}$ and obtain the components.
- 2. For each component K check up to a fixed number of steps O(z):
- 4. If K is 5-component then: trace $nh(\ell_i)$ for \leq 10z steps: If r is visited then: select ℓ_{i-1} If t is visited then: select ℓ_{i+1} If $nh(\ell_i)$ is found and r, t are not visited then: select ℓ_i If $nh(\ell_i)$ is not found then: abandon K



5. Return selected leaves.

Algorithm proofs

Need to show:

Algorithm Correctness

Lemma - Correctness

The algorithm returns at least $\frac{p}{10}m$ leaves with pairwise disjoint neighborhoods.

Algorithm proofs

Need to show:

Algorithm Correctness

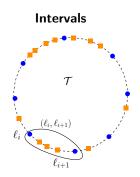
Lemma - Correctness

The algorithm returns at least $\frac{p}{10}m$ leaves with pairwise disjoint neighborhoods.

Algorithm time complexity

Lemma -Time complexity

The algorithm has time complexity $O(\frac{1}{1-p}n)$.



Idea:

Lower bound the number of intervals that do not have *many* unmarked leaves.

Intervals \mathcal{T}

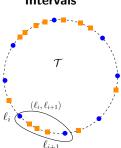
Idea:

Lower bound the number of intervals that do not have many unmarked leaves.

Lemma - Pigeonhole

Let M_{\times} be the number of marked leaves whose intervals have at most x unmarked leaves, $x \in \mathbb{N}$. Then $|M_x| \geq \frac{x-c+1}{x+1}m$ holds.

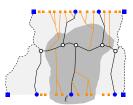
Intervals



c is the ratio between unmarked and marked leaves, $c = \left\lceil \frac{n-m}{m} \right\rceil$.

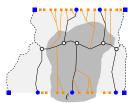
Idea:

Upper bound the size of a confined neighborhood by the number of unmarked leaves in the intervals related to the component.



Idea:

Upper bound the size of a confined neighborhood by the number of unmarked leaves in the intervals related to the component.



Lemma - Size of confined neighborhoods

Let K be component and a marked leaf ℓ with neighborhood $nh(\ell)$ confined K. Then, $|nh(\ell)| < 10\delta_K$.

 δ_K is the maximum size of intervals related to the component K.

Time complexity proof

Lemma -Time complexity

The algorithm has time complexity $O(\frac{1}{1-n}n)$.

■ There are $\Theta(m)$ components.

Time complexity proof

Lemma -Time complexity

The algorithm has time complexity $O(\frac{1}{1-p}n)$.

- There are $\Theta(m)$ components.
- For each component, the algorithm does a fixed number of steps $(\leq 10z)$.

By using
$$z = \left\lceil \frac{10c}{1-p} \right\rceil = \Theta(\frac{c}{1-p})$$
, the claim follows.

Conclusion

Theorem - Generalized

Let \mathcal{T} be an embedded binary tree with n leaves where:

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.
- iii) Topologically consecutive marked leaves have disjoint neighborhoods. Then:
- i) $\exists \geq \frac{1}{10}m$ marked leaves with pairwise disjoint neighborhoods.
- $(ii) \ge \frac{p}{10}m$ marked leaves can be found in $O(\frac{1}{1-p}n)$ time, $p \in (0,1)$.

Conclusion

Theorem - Generalized

Let \mathcal{T} be an embedded binary tree with n leaves where:

- i) m of the leaves have been marked.
- ii) Each marked leaf of \mathcal{T} has a neighborhood.
- iii) Topologically consecutive marked leaves have disjoint neighborhoods. Then:
- i) $\exists \geq \frac{1}{10}m$ marked leaves with pairwise disjoint neighborhoods.
- $(ii) \geq \frac{p}{10}m$ marked leaves can be found in $O(\frac{1}{1-p}n)$ time, $p \in (0,1)$.

Expect it to be helpful in designing deterministic linear time algorithms for problems related to abstract Voronoi diagrams and other generalized Voronoi diagrams.

Kolja Junginger, Ioannis Mantas, Evanthia Papadopoulou

Thank you for your attention!

