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On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Introduction

This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.

Part of an algorithm to construct in deterministic linear time the:
Voronoi Diagram of points in convex position, given the convex hull.

Can also be extended to other Voronoi diagrams with tree structure:
→ Farthest point VD, given the convex hull.
→ Update of a VD, after deleting a point.
→ Order-k VD, given the order-(k-1) VD.
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Applications

Applications

The algorithmic scheme has been used to derive linear time
algorithms for many problems, e.g.:

→ Medial axis of a simple polygon in O(n).
[Chin et al. - DCG 1999]

→ Order-k VD in O(nk2 + n log n).
[D.T. Lee - IEEE Trans. Comput. 1982]

→ Hamiltonian Abstract VD in O(n).
[Klein and Lingas - ISAAC 1994]

→ Forest-like Abstract VD in O(n).
[Bohler et al. - Comp. Geom. 2014]
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Original algorithm

Combinatorial result

Theorem [Aggarwal et al. 1987]

Let T be an embedded binary tree with n leaves

where:
i) Each leaf of T has a neighborhood - (a subtree of T ).
ii) Topologically consecutive leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10n leaves with pairwise disjoint neighborhoods.
ii) These leaves can be found in O(n) time.

T
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Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.

ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O( 1
1−p

n) time, for any p ∈ (0, 1).

T

Marked

Unmarked
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Remarks:
If the solution is required to be a constant fraction of m, then it
suffices to choose any constant for p ∈ (0, 1).

If p is a constant, then the algorithm has O(n) time complexity.
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Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
construction of order-k, etc.) remain open for:

Voronoi diagram of non-point sites
...even for simple sites as circles, line segments, etc.

Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:
→ Construction of the farthest line-segment VD.

[Khramtcova & Papadopoulou - arXiv 2017]
→ Update of an abstract VD, after the deletion of a site.

[Junginger & Papadopoulou - SoCG 2018]

Suggests that, to potentially apply the linear-time framework...
... We first need this generalized combinatorial result.
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Outline

Outline of results

1. Present some necessary preliminaries.

2. Show the first part of the theorem, the existence.

3. Show the second part of the theorem, the algorithm.
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Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let T ∗ be the tree obtained after deleting all leaves from T .

A node u ∈ T is called:
Leaf node if deg(u) = 1 in T ∗.
Comb node if deg(u) = 2 in T ∗.
Junction node if deg(u) = 3 in T ∗.

A spine is a maximal sequence of consecutive Comb nodes.

T T ∗
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Labeling the tree T

TT

Transformation:
1. Delete unmarked leaves.
2. Contract degree 2 nodes. Obtain tree Tdel .
3. Use T ∗

del to characterize nodes of T .
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Preliminaries

Labelings

Labeling the tree T

TT

Remark:
Original: All internal nodes get labeled.
Generalized: Only a subset of the internal
nodes get labeled.

Idea:
Pass the information of the marked leaves to a
subset of T to resemble [Aggarwal et al. 1987].

Comb node

Leaf node

Junction nodeTdel
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Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.
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L-component

5-component T

Observations:
Components are disjoint subtrees of T .
Each L-component has 2 marked leaves.
Each 5-component has 5 marked leaves.
Not every node belongs to a component.
A component can have Θ(n) nodes.
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Results

Existence

Existence

We want to prove:

Lemma - Existence
At least 1

10m marked leaves of T have pairwise disjoint neighborhoods.
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Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

For an L-component:
consider nh(`i ).
Case 1: If Leaf node s ∈ nh(`i )
⇒ nh(`i+1) is confined.
Case 2: If Leaf node s /∈ nh(`i )
⇒ nh(`i ) is confined.
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Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:
→ At least 1 out of 5 in every 5-component.
→ At least 1 out of 2 in every L-component.

Observation
Each spine has at most 4 ungrouped Comb nodes.

Lemma 2
For every 8 ungrouped Comb nodes there exists at least 1 L-component.

Combining the above, we conclude:

Lemma - Existence
At least 1

10m marked leaves have pairwise disjoint neighborhoods.
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Results

Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:
→ A component can have Θ(n) size.
→ A confined neighborhood can have Θ(n) size.
→ A single neighborhood can require Θ(n) time to be identified.

Introduce a parameter p ∈ (0, 1) in the algorithm.
Trade-off between time complexity and number of selected leaves.
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Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i ) for ≤ 4z steps:

If s is visited then:
select `i+1

If nh(`i ) is found and
s is not visited then:
select `i

If nh(`i ) is not found then:
abandon K
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Algorithm proofs

Need to show:

Algorithm Correctness

Lemma - Correctness
The algorithm returns at least p

10m leaves with pairwise disjoint
neighborhoods.

Algorithm time complexity

Lemma -Time complexity

The algorithm has time complexity O( 1
1−pn).
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Algorithm Correctness

Correctness proof

Idea:
Lower bound the number of intervals that do not have many unmarked
leaves.

Lemma - Pigeonhole

Let Mx be the number of marked leaves whose
intervals have at most x unmarked leaves, x ∈ N.
Then |Mx | ≥ x − c + 1

x + 1 m holds.

Intervals

`i

`i+1

T

(`i, `i+1)

c is the ratio between unmarked and marked leaves, c =
⌈
n−m
m

⌉
.
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Correctness proof
Idea:
Upper bound the size of a confined neighborhood by the number of
unmarked leaves in the intervals related to the component.

` `

Lemma - Size of confined neighborhoods

Let K be component and a marked leaf ` with neighborhood nh(`)
confined K . Then, |nh(`)| < 10δK .

δK is the maximum size of intervals related to the component K .
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Time complexity proof

Lemma -Time complexity

The algorithm has time complexity O( 1
1−pn).

There are Θ(m) components.

For each component, the algorithm does a fixed number of steps
(≤ 10z).
By using z =

⌈
10c
1−p

⌉
= Θ( c

1−p ), the claim follows.
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Conclusion

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O( 1
1−pn) time, p ∈ (0, 1).

Expect it to be helpful in designing deterministic linear time algorithms
for problems related to abstract Voronoi diagrams and other
generalized Voronoi diagrams.
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