
On selecting leaves with disjoint
neighborhoods in embedded trees

Kolja Junginger Ioannis Mantas Evanthia Papadopoulou

Faculty of Informatics, USI Università della Svizzera italiana,
Lugano, Switzerland

14/2/2019 - IIT Kharagpur, India - CALDAM 2019

1/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Introduction

This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.

Part of an algorithm to construct in deterministic linear time the:
Voronoi Diagram of points in convex position, given the convex hull.

Can also be extended to other Voronoi diagrams with tree structure:
→ Farthest point VD, given the convex hull.
→ Update of a VD, after deleting a point.
→ Order-k VD, given the order-(k-1) VD.

1/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Introduction

This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.

Part of an algorithm to construct in deterministic linear time the:
Voronoi Diagram of points in convex position, given the convex hull.

Can also be extended to other Voronoi diagrams with tree structure:
→ Farthest point VD, given the convex hull.
→ Update of a VD, after deleting a point.
→ Order-k VD, given the order-(k-1) VD.

1/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Introduction

This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.

Part of an algorithm to construct in deterministic linear time the:
Voronoi Diagram of points in convex position, given the convex hull.

Can also be extended to other Voronoi diagrams with tree structure:
→ Farthest point VD, given the convex hull.
→ Update of a VD, after deleting a point.
→ Order-k VD, given the order-(k-1) VD.

2/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Applications

Applications

The algorithmic scheme has been used to derive linear time
algorithms for many problems, e.g.:

→ Medial axis of a simple polygon in O(n).
[Chin et al. - DCG 1999]

→ Order-k VD in O(nk2 + n log n).
[D.T. Lee - IEEE Trans. Comput. 1982]

→ Hamiltonian Abstract VD in O(n).
[Klein and Lingas - ISAAC 1994]

→ Forest-like Abstract VD in O(n).
[Bohler et al. - Comp. Geom. 2014]

3/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Combinatorial result

Theorem [Aggarwal et al. 1987]

Let T be an embedded binary tree with n leaves

where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10n leaves with pairwise disjoint neighborhoods.
ii) These leaves can be found in O(n) time.

T

3/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Combinatorial result

Theorem [Aggarwal et al. 1987]

Let T be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).

ii) Topologically consecutive leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10n leaves with pairwise disjoint neighborhoods.
ii) These leaves can be found in O(n) time.

T

3/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Combinatorial result

Theorem [Aggarwal et al. 1987]

Let T be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.

Then:
i) ∃ ≥ 1

10n leaves with pairwise disjoint neighborhoods.
ii) These leaves can be found in O(n) time.

T

3/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Combinatorial result

Theorem [Aggarwal et al. 1987]

Let T be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.

Then:
i) ∃ ≥ 1

10n leaves with pairwise disjoint neighborhoods.
ii) These leaves can be found in O(n) time.

T

3/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Combinatorial result

Theorem [Aggarwal et al. 1987]

Let T be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.

Then:
i) ∃ ≥ 1

10n leaves with pairwise disjoint neighborhoods.
ii) These leaves can be found in O(n) time.

T

3/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Combinatorial result

Theorem [Aggarwal et al. 1987]

Let T be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10n leaves with pairwise disjoint neighborhoods.

ii) These leaves can be found in O(n) time.

T T

3/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Combinatorial result

Theorem [Aggarwal et al. 1987]

Let T be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10n leaves with pairwise disjoint neighborhoods.
ii) These leaves can be found in O(n) time.

T T

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.

ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−p

n) time, for any p ∈ (0, 1).

T

Marked

Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.

iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−p

n) time, for any p ∈ (0, 1).

T

Marked

Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.

iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−p

n) time, for any p ∈ (0, 1).

T

Marked

Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.

Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−p

n) time, for any p ∈ (0, 1).

T

Marked

Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.

Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−p

n) time, for any p ∈ (0, 1).

T

Marked

Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.

ii) ≥ p
10m marked leaves can be found in O(1

1−p
n) time, for any p ∈ (0, 1).

T

Marked

Unmarked

T

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−p

n) time, for any p ∈ (0, 1).

T

Marked

Unmarked

T

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−p

n) time, for any p ∈ (0, 1).

Remarks:
If the solution is required to be a constant fraction of m, then it
suffices to choose any constant for p ∈ (0, 1).

If p is a constant, then the algorithm has O(n) time complexity.

4/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Our result

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−p

n) time, for any p ∈ (0, 1).

Remarks:
If the solution is required to be a constant fraction of m, then it
suffices to choose any constant for p ∈ (0, 1).
If p is a constant, then the algorithm has O(n) time complexity.

5/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
construction of order-k, etc.) remain open for:

Voronoi diagram of non-point sites
...even for simple sites as circles, line segments, etc.

Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:
→ Construction of the farthest line-segment VD.

[Khramtcova & Papadopoulou - arXiv 2017]
→ Update of an abstract VD, after the deletion of a site.

[Junginger & Papadopoulou - SoCG 2018]

Suggests that, to potentially apply the linear-time framework...
... We first need this generalized combinatorial result.

5/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
construction of order-k, etc.) remain open for:

Voronoi diagram of non-point sites
...even for simple sites as circles, line segments, etc.

Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:
→ Construction of the farthest line-segment VD.

[Khramtcova & Papadopoulou - arXiv 2017]
→ Update of an abstract VD, after the deletion of a site.

[Junginger & Papadopoulou - SoCG 2018]

Suggests that, to potentially apply the linear-time framework...
... We first need this generalized combinatorial result.

5/20

On selecting leaves with disjoint neighborhoods in embedded trees
Intoduction

Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
construction of order-k, etc.) remain open for:

Voronoi diagram of non-point sites
...even for simple sites as circles, line segments, etc.

Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:
→ Construction of the farthest line-segment VD.

[Khramtcova & Papadopoulou - arXiv 2017]
→ Update of an abstract VD, after the deletion of a site.

[Junginger & Papadopoulou - SoCG 2018]

Suggests that, to potentially apply the linear-time framework...
... We first need this generalized combinatorial result.

6/20

On selecting leaves with disjoint neighborhoods in embedded trees
Outline

Outline of results

1. Present some necessary preliminaries.

2. Show the first part of the theorem, the existence.

3. Show the second part of the theorem, the algorithm.

7/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let T ∗ be the tree obtained after deleting all leaves from T .

A node u ∈ T is called:
Leaf node if deg(u) = 1 in T ∗.
Comb node if deg(u) = 2 in T ∗.
Junction node if deg(u) = 3 in T ∗.

A spine is a maximal sequence of consecutive Comb nodes.

T T ∗

7/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let T ∗ be the tree obtained after deleting all leaves from T .
A node u ∈ T is called:

Leaf node if deg(u) = 1 in T ∗.

Comb node if deg(u) = 2 in T ∗.
Junction node if deg(u) = 3 in T ∗.

A spine is a maximal sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction node

T T ∗

7/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let T ∗ be the tree obtained after deleting all leaves from T .
A node u ∈ T is called:

Leaf node if deg(u) = 1 in T ∗.
Comb node if deg(u) = 2 in T ∗.

Junction node if deg(u) = 3 in T ∗.

A spine is a maximal sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction node

T T ∗

7/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let T ∗ be the tree obtained after deleting all leaves from T .
A node u ∈ T is called:

Leaf node if deg(u) = 1 in T ∗.
Comb node if deg(u) = 2 in T ∗.
Junction node if deg(u) = 3 in T ∗.

A spine is a maximal sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction node

T T ∗

7/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let T ∗ be the tree obtained after deleting all leaves from T .
A node u ∈ T is called:

Leaf node if deg(u) = 1 in T ∗.
Comb node if deg(u) = 2 in T ∗.
Junction node if deg(u) = 3 in T ∗.

A spine is a maximal sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction node

T T ∗

7/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let T ∗ be the tree obtained after deleting all leaves from T .
A node u ∈ T is called:

Leaf node if deg(u) = 1 in T ∗.
Comb node if deg(u) = 2 in T ∗.
Junction node if deg(u) = 3 in T ∗.

A spine is a maximal sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction node

T T ∗

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Transformation:
1. Delete unmarked leaves.
2. Contract degree 2 nodes. Obtain tree Tdel .
3. Use T ∗

del to characterize nodes of T .

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Transformation:
1. Delete unmarked leaves.

2. Contract degree 2 nodes. Obtain tree Tdel .
3. Use T ∗

del to characterize nodes of T .

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Transformation:
1. Delete unmarked leaves.
2. Contract degree 2 nodes. Obtain tree Tdel .

3. Use T ∗
del to characterize nodes of T .

Tdel

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Transformation:
1. Delete unmarked leaves.
2. Contract degree 2 nodes. Obtain tree Tdel .
3. Use T ∗

del to characterize nodes of T .

Comb node

Leaf node

Junction nodeTdel
T ∗del

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Transformation:
3. Use T ∗

del to characterize nodes of T .
A node u ∈ T is called:

Leaf: if u ∈ T ∗
del and deg(u) = 1 in T ∗

del .

Comb: if u ∈ T ∗
del and deg(u) = 2 in T ∗

del .

Junction: if u ∈ T ∗
del and deg(u) = 3 in T ∗

del .

Spine: A sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction nodeTdel
T ∗del

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Transformation:
3. Use T ∗

del to characterize nodes of T .
A node u ∈ T is called:

Leaf: if u ∈ T ∗
del and deg(u) = 1 in T ∗

del .

Comb: if u ∈ T ∗
del and deg(u) = 2 in T ∗

del .

Junction: if u ∈ T ∗
del and deg(u) = 3 in T ∗

del .

Spine: A sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction nodeTdel
T ∗del

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Transformation:
3. Use T ∗

del to characterize nodes of T .
A node u ∈ T is called:

Leaf: if u ∈ T ∗
del and deg(u) = 1 in T ∗

del .

Comb: if u ∈ T ∗
del and deg(u) = 2 in T ∗

del .

Junction: if u ∈ T ∗
del and deg(u) = 3 in T ∗

del .

Spine: A sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction nodeTdel
T ∗del

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Transformation:
3. Use T ∗

del to characterize nodes of T .
A node u ∈ T is called:

Leaf: if u ∈ T ∗
del and deg(u) = 1 in T ∗

del .

Comb: if u ∈ T ∗
del and deg(u) = 2 in T ∗

del .

Junction: if u ∈ T ∗
del and deg(u) = 3 in T ∗

del .

Spine: A sequence of consecutive Comb nodes.

Comb node

Leaf node

Junction nodeTdel
T ∗del

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Remark:
Original: All internal nodes get labeled.
Generalized: Only a subset of the internal
nodes get labeled.

Idea:
Pass the information of the marked leaves to a
subset of T to resemble [Aggarwal et al. 1987].

Comb node

Leaf node

Junction nodeTdel
T ∗del

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Labelings

Labeling the tree T

TT

Remark:
Original: All internal nodes get labeled.
Generalized: Only a subset of the internal
nodes get labeled.

Idea:
Pass the information of the marked leaves to a
subset of T to resemble [Aggarwal et al. 1987].

Comb node

Leaf node

Junction nodeTdel
T ∗del

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.

5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

T

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

T

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

T

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

T

9/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components
Define two types of components, which are subtrees of T .

L-component: The Leaf node and
the 2 subtrees hanging off that node.

T

Subdivide each spine into groups of
5 Comb nodes.
5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

T

10/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components

L-component

5-component T

Observations:
Components are disjoint subtrees of T .
Each L-component has 2 marked leaves.
Each 5-component has 5 marked leaves.
Not every node belongs to a component.
A component can have Θ(n) nodes.

10/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components

L-component

5-component T

Observations:
Components are disjoint subtrees of T .

Each L-component has 2 marked leaves.
Each 5-component has 5 marked leaves.
Not every node belongs to a component.
A component can have Θ(n) nodes.

10/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components

L-component

5-component T

Observations:
Components are disjoint subtrees of T .
Each L-component has 2 marked leaves.
Each 5-component has 5 marked leaves.

Not every node belongs to a component.
A component can have Θ(n) nodes.

10/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components

L-component

5-component T

Observations:
Components are disjoint subtrees of T .
Each L-component has 2 marked leaves.
Each 5-component has 5 marked leaves.
Not every node belongs to a component.

A component can have Θ(n) nodes.

10/20

On selecting leaves with disjoint neighborhoods in embedded trees
Preliminaries

Components

Components

L-component

5-component T

Observations:
Components are disjoint subtrees of T .
Each L-component has 2 marked leaves.
Each 5-component has 5 marked leaves.
Not every node belongs to a component.
A component can have Θ(n) nodes.

11/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence

We want to prove:

Lemma - Existence
At least 1

10m marked leaves of T have pairwise disjoint neighborhoods.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

For an L-component:
consider nh(`i).
Case 1: If Leaf node s ∈ nh(`i)
⇒ nh(`i+1) is confined.
Case 2: If Leaf node s /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i `i+1

s
For an L-component:
consider nh(`i).

Case 1: If Leaf node s ∈ nh(`i)
⇒ nh(`i+1) is confined.
Case 2: If Leaf node s /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i `i+1

s
For an L-component:
consider nh(`i).
Case 1: If Leaf node s ∈ nh(`i)

⇒ nh(`i+1) is confined.
Case 2: If Leaf node s /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i `i+1

s
For an L-component:
consider nh(`i).
Case 1: If Leaf node s ∈ nh(`i)
⇒ nh(`i+1) is confined.

Case 2: If Leaf node s /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i `i+1

s
For an L-component:
consider nh(`i).

Case 1: If Leaf node s ∈ nh(`i)
⇒ nh(`i+1) is confined.

Case 2: If Leaf node s /∈ nh(`i)

⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i `i+1

s
For an L-component:
consider nh(`i).

Case 1: If Leaf node s ∈ nh(`i)
⇒ nh(`i+1) is confined.

Case 2: If Leaf node s /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

For a 5-component:
consider nh(`i).
Case 1: If Comb node t ∈ nh(`i)
⇒ nh(`i+1) is confined.
Case 2: If Comb node r ∈ nh(`i)
⇒ nh(`i−1) is confined.
Case 3: If Comb nodes r , t /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i−1 `i
`i+1

r t

For a 5-component:
consider nh(`i).

Case 1: If Comb node t ∈ nh(`i)
⇒ nh(`i+1) is confined.
Case 2: If Comb node r ∈ nh(`i)
⇒ nh(`i−1) is confined.
Case 3: If Comb nodes r , t /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i−1 `i
`i+1

r t

For a 5-component:
consider nh(`i).
Case 1: If Comb node t ∈ nh(`i)

⇒ nh(`i+1) is confined.
Case 2: If Comb node r ∈ nh(`i)
⇒ nh(`i−1) is confined.
Case 3: If Comb nodes r , t /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i−1 `i
`i+1

r t

For a 5-component:
consider nh(`i).
Case 1: If Comb node t ∈ nh(`i)
⇒ nh(`i+1) is confined.

Case 2: If Comb node r ∈ nh(`i)
⇒ nh(`i−1) is confined.
Case 3: If Comb nodes r , t /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i−1 `i
`i+1

r t

For a 5-component:
consider nh(`i).

Case 1: If Comb node t ∈ nh(`i)
⇒ nh(`i+1) is confined.

Case 2: If Comb node r ∈ nh(`i)

⇒ nh(`i−1) is confined.
Case 3: If Comb nodes r , t /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i−1 `i
`i+1

r t

For a 5-component:
consider nh(`i).

Case 1: If Comb node t ∈ nh(`i)
⇒ nh(`i+1) is confined.

Case 2: If Comb node r ∈ nh(`i)
⇒ nh(`i−1) is confined.

Case 3: If Comb nodes r , t /∈ nh(`i)
⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i−1 `i
`i+1

r t

For a 5-component:
consider nh(`i).

Case 1: If Comb node t ∈ nh(`i)
⇒ nh(`i+1) is confined.
Case 2: If Comb node r ∈ nh(`i)
⇒ nh(`i−1) is confined.

Case 3: If Comb nodes r , t /∈ nh(`i)

⇒ nh(`i) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ` with
neighborhood nh(`) confined to that component.

`i−1 `i
`i+1

r t

For a 5-component:
consider nh(`i).

Case 1: If Comb node t ∈ nh(`i)
⇒ nh(`i+1) is confined.
Case 2: If Comb node r ∈ nh(`i)
⇒ nh(`i−1) is confined.

Case 3: If Comb nodes r , t /∈ nh(`i)
⇒ nh(`i) is confined.

13/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:
→ At least 1 out of 5 in every 5-component.
→ At least 1 out of 2 in every L-component.

Observation
Each spine has at most 4 ungrouped Comb nodes.

Lemma 2
For every 8 ungrouped Comb nodes there exists at least 1 L-component.

Combining the above, we conclude:

Lemma - Existence
At least 1

10m marked leaves have pairwise disjoint neighborhoods.

13/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:
→ At least 1 out of 5 in every 5-component.
→ At least 1 out of 2 in every L-component.

Observation
Each spine has at most 4 ungrouped Comb nodes.

Lemma 2
For every 8 ungrouped Comb nodes there exists at least 1 L-component.

Combining the above, we conclude:

Lemma - Existence
At least 1

10m marked leaves have pairwise disjoint neighborhoods.

13/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Existence

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:
→ At least 1 out of 5 in every 5-component.
→ At least 1 out of 2 in every L-component.

Observation
Each spine has at most 4 ungrouped Comb nodes.

Lemma 2
For every 8 ungrouped Comb nodes there exists at least 1 L-component.

Combining the above, we conclude:

Lemma - Existence
At least 1

10m marked leaves have pairwise disjoint neighborhoods.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:
→ A component can have Θ(n) size.
→ A confined neighborhood can have Θ(n) size.
→ A single neighborhood can require Θ(n) time to be identified.

Introduce a parameter p ∈ (0, 1) in the algorithm.
Trade-off between time complexity and number of selected leaves.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering.

This implies that:
→ A component can have Θ(n) size.
→ A confined neighborhood can have Θ(n) size.
→ A single neighborhood can require Θ(n) time to be identified.

Introduce a parameter p ∈ (0, 1) in the algorithm.
Trade-off between time complexity and number of selected leaves.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:
→ A component can have Θ(n) size.

→ A confined neighborhood can have Θ(n) size.
→ A single neighborhood can require Θ(n) time to be identified.

Introduce a parameter p ∈ (0, 1) in the algorithm.
Trade-off between time complexity and number of selected leaves.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:
→ A component can have Θ(n) size.
→ A confined neighborhood can have Θ(n) size.

→ A single neighborhood can require Θ(n) time to be identified.

Introduce a parameter p ∈ (0, 1) in the algorithm.
Trade-off between time complexity and number of selected leaves.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:
→ A component can have Θ(n) size.
→ A confined neighborhood can have Θ(n) size.
→ A single neighborhood can require Θ(n) time to be identified.

Introduce a parameter p ∈ (0, 1) in the algorithm.
Trade-off between time complexity and number of selected leaves.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:
→ A component can have Θ(n) size.
→ A confined neighborhood can have Θ(n) size.
→ A single neighborhood can require Θ(n) time to be identified.

Introduce a parameter p ∈ (0, 1) in the algorithm.
Trade-off between time complexity and number of selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i) for ≤ 4z steps:

If s is visited then:
select `i+1

If nh(`i) is found and
s is not visited then:
select `i

If nh(`i) is not found then:
abandon K

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i) for ≤ 4z steps:

If s is visited then:
select `i+1

If nh(`i) is found and
s is not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i `i+1

s

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i) for ≤ 4z steps:

If s is visited then:

select `i+1
If nh(`i) is found and
s is not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i `i+1

s

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i) for ≤ 4z steps:

If s is visited then:
select `i+1

If nh(`i) is found and
s is not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i `i+1

s

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i) for ≤ 4z steps:

If s is visited then:
select `i+1

If nh(`i) is found and
s is not visited then:

select `i
If nh(`i) is not found then:
abandon K

`i `i+1

s

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i) for ≤ 4z steps:

If s is visited then:
select `i+1

If nh(`i) is found and
s is not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i `i+1

s

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i) for ≤ 4z steps:

If s is visited then:
select `i+1

If nh(`i) is found and
s is not visited then:
select `i

If nh(`i) is not found then:

abandon K

`i `i+1

s

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If K is L-component then:
trace nh(`i) for ≤ 4z steps:

If s is visited then:
select `i+1

If nh(`i) is found and
s is not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i `i+1

s

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:

If r is visited then:

select `i−1

If t is visited then:

select `i+1

If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:

select `i−1
If t is visited then:

select `i+1

If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:
select `i−1

If t is visited then:

select `i+1

If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:
select `i−1

If t is visited then:

select `i+1
If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:
select `i−1

If t is visited then:
select `i+1

If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:
select `i−1

If t is visited then:
select `i+1

If nh(`i) is found and
r , t are not visited then:

select `i
If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:
select `i−1

If t is visited then:
select `i+1

If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:
select `i−1

If t is visited then:
select `i+1

If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:

abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:
select `i−1

If t is visited then:
select `i+1

If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

15/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If K is 5-component then:
trace nh(`i) for ≤ 10z steps:
If r is visited then:
select `i−1

If t is visited then:
select `i+1

If nh(`i) is found and
r , t are not visited then:
select `i

If nh(`i) is not found then:
abandon K

`i−1 `i
`i+1

r t

5. Return selected leaves.

16/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm proofs

Need to show:

Algorithm Correctness

Lemma - Correctness
The algorithm returns at least p

10m leaves with pairwise disjoint
neighborhoods.

Algorithm time complexity

Lemma -Time complexity

The algorithm has time complexity O(1
1−pn).

16/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm

Algorithm proofs

Need to show:

Algorithm Correctness

Lemma - Correctness
The algorithm returns at least p

10m leaves with pairwise disjoint
neighborhoods.

Algorithm time complexity

Lemma -Time complexity

The algorithm has time complexity O(1
1−pn).

17/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm Correctness

Correctness proof

Idea:
Lower bound the number of intervals that do not have many unmarked
leaves.

Lemma - Pigeonhole

Let Mx be the number of marked leaves whose
intervals have at most x unmarked leaves, x ∈ N.
Then |Mx | ≥ x − c + 1

x + 1 m holds.

Intervals

`i

`i+1

T

(`i, `i+1)

c is the ratio between unmarked and marked leaves, c =
⌈
n−m
m

⌉
.

17/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm Correctness

Correctness proof
Idea:
Lower bound the number of intervals that do not have many unmarked
leaves.

Lemma - Pigeonhole

Let Mx be the number of marked leaves whose
intervals have at most x unmarked leaves, x ∈ N.
Then |Mx | ≥ x − c + 1

x + 1 m holds.

Intervals

`i

`i+1

T

(`i, `i+1)

c is the ratio between unmarked and marked leaves, c =
⌈
n−m
m

⌉
.

17/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm Correctness

Correctness proof
Idea:
Lower bound the number of intervals that do not have many unmarked
leaves.

Lemma - Pigeonhole

Let Mx be the number of marked leaves whose
intervals have at most x unmarked leaves, x ∈ N.
Then |Mx | ≥ x − c + 1

x + 1 m holds.

Intervals

`i

`i+1

T

(`i, `i+1)

c is the ratio between unmarked and marked leaves, c =
⌈
n−m
m

⌉
.

18/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm Correctness

Correctness proof
Idea:
Upper bound the size of a confined neighborhood by the number of
unmarked leaves in the intervals related to the component.

` `

Lemma - Size of confined neighborhoods

Let K be component and a marked leaf ` with neighborhood nh(`)
confined K . Then, |nh(`)| < 10δK .

δK is the maximum size of intervals related to the component K .

18/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm Correctness

Correctness proof
Idea:
Upper bound the size of a confined neighborhood by the number of
unmarked leaves in the intervals related to the component.

` `

Lemma - Size of confined neighborhoods

Let K be component and a marked leaf ` with neighborhood nh(`)
confined K . Then, |nh(`)| < 10δK .

δK is the maximum size of intervals related to the component K .

19/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm time complexity

Time complexity proof

Lemma -Time complexity

The algorithm has time complexity O(1
1−pn).

There are Θ(m) components.

For each component, the algorithm does a fixed number of steps
(≤ 10z).
By using z =

⌈
10c
1−p

⌉
= Θ(c

1−p), the claim follows.

19/20

On selecting leaves with disjoint neighborhoods in embedded trees
Results

Algorithm time complexity

Time complexity proof

Lemma -Time complexity

The algorithm has time complexity O(1
1−pn).

There are Θ(m) components.
For each component, the algorithm does a fixed number of steps
(≤ 10z).
By using z =

⌈
10c
1−p

⌉
= Θ(c

1−p), the claim follows.

20/20

On selecting leaves with disjoint neighborhoods in embedded trees
Conclusion

Conclusion

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−pn) time, p ∈ (0, 1).

Expect it to be helpful in designing deterministic linear time algorithms
for problems related to abstract Voronoi diagrams and other
generalized Voronoi diagrams.

20/20

On selecting leaves with disjoint neighborhoods in embedded trees
Conclusion

Conclusion

Theorem - Generalized
Let T be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of T has a neighborhood.
iii) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:
i) ∃ ≥ 1

10m marked leaves with pairwise disjoint neighborhoods.
ii) ≥ p

10m marked leaves can be found in O(1
1−pn) time, p ∈ (0, 1).

Expect it to be helpful in designing deterministic linear time algorithms
for problems related to abstract Voronoi diagrams and other
generalized Voronoi diagrams.

20/20

On selecting leaves with disjoint neighborhoods in embedded trees
CALDAM 2019

Kolja Junginger, Ioannis Mantas, Evanthia Papadopoulou

Thank you for your attention!

TT

T

	Outline
	Intoduction
	Applications
	Original algorithm

	Outline
	Generalized result

	Preliminaries
	Labelings
	Components

	Results
	Existence
	Algorithm
	Algorithm Correctness
	Algorithm time complexity

	Conclusion

