On selecting leaves with disjoint
neighborhoods in embedded trees

Kolja Junginger loannis Mantas Evanthia Papadopoulou

Faculty of Informatics, USI Universita della Svizzera italiana,
Lugano, Switzerland

14/2/2019 - lIT Kharagpur, India - CALDAM 2019

On selecting leaves with disjoint neighborhoods in embedded trees

L Intoduction

Introduction

This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.

1/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Intoduction

Introduction

This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.

Part of an algorithm to construct in deterministic linear time the:
Voronoi Diagram of points in convex position, given the convex hull.

1/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Intoduction

Introduction

This work focuses on a generalization of a combinatorial result by
A. Aggarwal, L. Giubas, J. Saxe and P. Shor [DCG 1987].

Given an embedded tree, the goal is to select in linear time a constant
fraction of the leaves.

Part of an algorithm to construct in deterministic linear time the:
Voronoi Diagram of points in convex position, given the convex hull.

Can also be extended to other Voronoi diagrams with tree structure:
— Farthest point VD, given the convex hull.
— Update of a VD, after deleting a point.
— Order-k VD, given the order-(k-1) VD.

1/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Applications

Applications

m The algorithmic scheme has been used to derive linear time
algorithms for many problems, e.g.:

— Medial axis of a simple polygon in O(n).
[Chin et al. - DCG 1999]

— Order-k VD in O(nk? + nlog n).
[D.T. Lee - IEEE Trans. Comput. 1982]

— Hamiltonian Abstract VD in O(n).
[Klein and Lingas - ISAAC 1994]

— Forest-like Abstract VD in O(n).
[Bohler et al. - Comp. Geom. 2014]

2/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Combinatorial result

Let 7 be an embedded binary tree with n leaves

3/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Combinatorial result

Let 7 be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).

3/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm
Combinatorial result

Theorem

Let 7 be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.

3/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm
Combinatorial result

Theorem

Let 7 be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.

3/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm
Combinatorial result

Theorem

Let 7 be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).
ii) Topologically consecutive leaves have disjoint neighborhoods.

3/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm
Combinatorial result

Theorem

Let 7 be an embedded binary tree with n leaves where:
i) Each leaf of T has a neighborhood - (a subtree of T).

ii) Topologically consecutive leaves have disjoint neighborhoods.
Then:

i3> %n leaves with pairwise disjoint neighborhoods.

3/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm
Combinatorial result

Theorem

Let 7 be an embedded binary tree with n leaves where:

i) Each leaf of T has a neighborhood - (a subtree of T).

ii) Topologically consecutive leaves have disjoint neighborhoods.
Then:

i3> %n leaves with pairwise disjoint neighborhoods.

i) These leaves can be found in O(n) time.

3/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.

o Marked
u Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of 7" has a neighborhood.

o Marked
Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:
i) m of the leaves have been marked.
ii) Each marked leaf of 7" has a neighborhood.

o Marked
u Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7" has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.

o Marked
Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7" has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.

o Marked
Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm
Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7" has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:

i3> 1—10m marked leaves with pairwise disjoint neighborhoods.

o Marked
Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7" has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:

i3> 1—10m marked leaves with pairwise disjoint neighborhoods.

i) > {5m marked leaves can be found in O(rlpn) time, for any p € (0, 1).

o Marked
Unmarked

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7" has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:

i3> 1—10m marked leaves with pairwise disjoint neighborhoods.

i) > {5m marked leaves can be found in O(rlpn) time, for any p € (0, 1).

Remarks:

m If the solution is required to be a constant fraction of m, then it
suffices to choose any constant for p € (0,1).

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Our result

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7" has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:

i3> 1—10m marked leaves with pairwise disjoint neighborhoods.

i) > {5m marked leaves can be found in O(rlpn) time, for any p € (0, 1).

Remarks:

m If the solution is required to be a constant fraction of m, then it
suffices to choose any constant for p € (0,1).

m If pis a constant, then the algorithm has O(n) time complexity.

4/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
construction of order-k, etc.) remain open for:

m Voronoi diagram of non-point sites
...even for simple sites as circles, line segments, etc.

m Abstract Voronoi diagrams

5/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
construction of order-k, etc.) remain open for:

m Voronoi diagram of non-point sites
...even for simple sites as circles, line segments, etc.
m Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:

— Construction of the farthest line-segment VD.
[Khramtcova & Papadopoulou - arXiv 2017]

— Update of an abstract VD, after the deletion of a site.
[Junginger & Papadopoulou - SoCG 2018]

5/20

On selecting leaves with disjoint neighborhoods in embedded trees

L~ Intoduction

Original algorithm

Motivation

Linear-time algorithms for problems mentioned (e.g. deletion of a site,
construction of order-k, etc.) remain open for:

m Voronoi diagram of non-point sites
...even for simple sites as circles, line segments, etc.

m Abstract Voronoi diagrams

Recent work on randomized linear constructions of these diagrams:

— Construction of the farthest line-segment VD.
[Khramtcova & Papadopoulou - arXiv 2017]

— Update of an abstract VD, after the deletion of a site.
[Junginger & Papadopoulou - SoCG 2018]

Suggests that, to potentially apply the linear-time framework...

... We first need this generalized combinatorial result.
5/20

On selecting leaves with disjoint neighborhoods in embedded trees
L outline

Outline of results

1. Present some necessary preliminaries.

2. Show the first part of the theorem, the existence.

3. Show the second part of the theorem, the algorithm.

6/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let 7* be the tree obtained after deleting all leaves from 7.

Ts

7/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]

Let 7* be the tree obtained after deleting all leaves from 7.

A node u € T is called:
m Leaf node if deg(u) =1in T*.

o Comb node

x Junction node

7/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]

Let 7* be the tree obtained after deleting all leaves from 7.

A node u € T is called:
m Leaf node if deg(u) =1in T*.
m Comb node if deg(u) =2 in T*.

o Comb node

x Junction node

7/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]
Let 7* be the tree obtained after deleting all leaves from 7.
A node u € T is called:

m Leaf node if deg(u) =1in T*.
m Comb node if deg(u) =2 in T*.
m Junction node if deg(u) =3 in T*.

o Comb node
x Junction node

7/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]

Let 7* be the tree obtained after deleting all leaves from 7.
A node u € T is called:

m Leaf node if deg(u) =1in T*.
m Comb node if deg(u) =2 in T*.
m Junction node if deg(u) =3 in T*.

A spine is a maximal sequence of consecutive Comb nodes.

o Comb node
x Junction node
o Leaf node

7/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the nodes [Aggarwal et al. 1987]

Let 7* be the tree obtained after deleting all leaves from 7.
A node u € T is called:

m Leaf node if deg(u) =1in T*.
m Comb node if deg(u) =2 in T*.
m Junction node if deg(u) =3 in T*.

A spine is a maximal sequence of consecutive Comb nodes.

o Comb node

x Junction node

7/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T

Transformation:

1. Delete unmarked leaves.

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T

Transformation:
1. Delete unmarked leaves.
T 2. Contract degree 2 nodes. Obtain tree 7.

Tael

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T

Transformation:
1. Delete unmarked leaves.
T 2. Contract degree 2 nodes. Obtain tree 7.
3. Use T, to characterize nodes of 7.

Tiul o Comb node
x Junction node

Tael

o Leaf node

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T
Transformation:
3. Use 7, to characterize nodes of 7.
A node u € T is called:
m Leaf: if v € T4, and deg(u) =1 in T3,

Ti o Comb node
x Junction node

Tael

o Leaf node

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T
Transformation:
3. Use 7, to characterize nodes of 7.
A node u € T is called:
m Leaf: if v € T4, and deg(u) =1 in T3,
m Comb: if u € Ty, and deg(u) =2 in Tgy.

Tiul o Comb node
x Junction node

Tael

o Leaf node

8/20

On selecting leaves with disjoint neighborhoods in embedded trees
L Preliminaries

Labelings

Labeling the tree T

Transformation:
3. Use 7, to characterize nodes of 7.
A node u € T is called:
m Leaf: if v € T4, and deg(u) =1 in T3,
m Comb: if u € Ty, and deg(u) =2 in Tgy.
m Junction: if u € T4, and deg(u) =3 in Tg,.

Tiul o Comb node
& x Junction node
o Leaf node

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T

Tael

Transformation:
3. Use 7, to characterize nodes of 7.
A node u € T is called:
m Leaf: if v € T4, and deg(u) =1 in T3,
m Comb: if u € Ty, and deg(u) =2 in Tgy.
m Junction: if u € T4, and deg(u) =3 in Tg,.

Spine: A sequence of consecutive Comb nodes.

Tiul o Comb node
x Junction node
o Leaf node

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T

Remark:

Original: All internal nodes get labeled.
Generalized: Only a subset of the internal
nodes get labeled.

Tiul o Comb node
x Junction node
o Leaf node

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Labelings

Labeling the tree T

Remark:

Original: All internal nodes get labeled.
Generalized: Only a subset of the internal
nodes get labeled.

Idea:
Pass the information of the marked leaves to a
subset of T to resemble [Aggarwal et al. 1987].

T o Comb node
x Junction node
o Leaf node

8/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

Define two types of components, which are subtrees of 7.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

Define two types of components, which are subtrees of 7.

L-component: The Leaf node and
the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

Define two types of components, which are subtrees of 7.

L-component: The Leaf node and
the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

Define two types of components, which are subtrees of 7.

L-component: The Leaf node and
the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

Define two types of components, which are subtrees of 7.

L-component: The Leaf node and
the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components
Define two types of components, which are subtrees of 7.

Subdivide each spine into groups of

L-component: The Leaf node and 5 Comb nodes.

the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components
Define two types of components, which are subtrees of 7.

Subdivide each spine into groups of
5 Comb nodes.

5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

L-component: The Leaf node and
the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components
Define two types of components, which are subtrees of 7.

Subdivide each spine into groups of
5 Comb nodes.

5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

L-component: The Leaf node and
the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components
Define two types of components, which are subtrees of 7.

Subdivide each spine into groups of
5 Comb nodes.

5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

L-component: The Leaf node and
the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components
Define two types of components, which are subtrees of 7.

Subdivide each spine into groups of
5 Comb nodes.

5-component: Part of the spine
containing the 5 Comb nodes and
the subtress hanging off that.

L-component: The Leaf node and
the 2 subtrees hanging off that node.

9/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

m L-component

= 5-component

10/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

m L-component

= 5-component

Observations:

m Components are disjoint subtrees of 7.

10/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

m L-component

= 5-component

Observations:
m Components are disjoint subtrees of 7.
m Each L-component has 2 marked leaves.

m Each 5-component has 5 marked leaves.

10/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

m L-component

= 5-component

Observations:
m Components are disjoint subtrees of 7.
m Each L-component has 2 marked leaves.
m Each 5-component has 5 marked leaves.
m Not every node belongs to a component.

10/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Preliminaries

Components

Components

m L-component

m 5-component

Observations:
m Components are disjoint subtrees of 7.
m Each L-component has 2 marked leaves.
m Each 5-component has 5 marked leaves.
m Not every node belongs to a component.
m A component can have ©(n) nodes. 10/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence

We want to prove:

Lemma - Existence

At least %m marked leaves of 7 have pairwise disjoint neighborhoods.

11/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For an L-component:
consider nh(¢;).

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For an L-component:
consider nh(¢;).

Case 1: If Leaf node s € nh(¥;)

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

Lemma 1
In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For an L-component:
consider nh(¢;).

Case 1: If Leaf node s € nh(¥;)
= nh(¢i;+1) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For an L-component:
consider nh(¢;).

Case 2: If Leaf node s ¢ nh({;)

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

Lemma 1

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For an L-component:
consider nh(¢;).

Case 2: If Leaf node s ¢ nh({;)
= nh(¢;) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For a b-component:
consider nh(¢;).

liva

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For a b-component:
consider nh(¢;).

Case 1: If Comb node t € nh(¢;)

liva

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For a b-component:
consider nh(¢;).

Case 1: If Comb node t € nh(¢;)
= nh(¥;+1) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For a b-component:
consider nh(¢;).

Case 2: If Comb node r € nh(¢;)

liva

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For a b-component:
consider nh(¢;).

Case 2: If Comb node r € nh(¢;)

’ = nh(¢;_1) is confined.
i+1

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For a b-component:
consider nh(¢;).

liva

Case 3: If Comb nodes r, t ¢ nh(¢;)

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence proof

In every component, there a exists at least one marked leaf ¢ with
neighborhood nh(¢) confined to that component.

For a b-component:
consider nh(¢;).

liva

Case 3: If Comb nodes r, t ¢ nh(¢;)
= nh(¥;) is confined.

12/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:
—> At least 1 out of 5 in every 5-component.
— At least 1 out of 2 in every L-component.

13/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:
—> At least 1 out of 5 in every 5-component.
— At least 1 out of 2 in every L-component.

Observation

Each spine has at most 4 ungrouped Comb nodes.

For every 8 ungrouped Comb nodes there exists at least 1 L-component.

13/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

Existence

Existence

Corrolary - Lemma 1

The number of marked leaves with a confined neighborhood is:
—> At least 1 out of 5 in every 5-component.
— At least 1 out of 2 in every L-component.

Each spine has at most 4 ungrouped Comb nodes.

For every 8 ungrouped Comb nodes there exists at least 1 L-component.

Combining the above, we conclude:

Lemma - Existence

At least %m marked leaves have pairwise disjoint neighborhoods.

13/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results
= Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:
— A component can have ©(n) size.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results
= Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:

— A component can have ©(n) size.

— A confined neighborhood can have ©(n) size.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results
= Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:

— A component can have ©(n) size.

— A confined neighborhood can have ©(n) size.

— A single neighborhood can require ©(n) time to be identified.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Designing an algorithm

Goal: Design an algorithm to return a fraction of the marked leaves
with pairwise disjoint neighborhoods.

Challenge: Arbitrary distribution of unmarked leaves among marked
leaves in the topological ordering. This implies that:

— A component can have ©(n) size.

— A confined neighborhood can have ©(n) size.

— A single neighborhood can require ©(n) time to be identified.

Introduce a parameter p € (0,1) in the algorithm.
Trade-off between time complexity and number of selected leaves.

14/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description
1. Label the tree T and obtain the components.
2. For each component K check up to a fixed number of steps O(z):

3. If Kis L-component then:
trace nh(¢;) for < 4z steps:

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.
2. For each component K check up to a fixed number of steps O(z):
3. If Kis L-component then:

trace nh(¢;) for < 4z steps:
If s is visited then:

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If Kis L-component then:
trace nh(¢;) for < 4z steps:
If s is visited then:
select ;4

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If Kis L-component then:
trace nh(¢;) for < 4z steps:
If s is visited then:
select ;4
If nh(¢;) is found and
s is not visited then:

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If Kis L-component then:
trace nh(¢;) for < 4z steps:
If s is visited then:
select ;4
If nh(¢;) is found and
s is not visited then:
select /;

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If Kis L-component then:
trace nh(¢;) for < 4z steps:

If s is visited then: (? . . P
select ;4

If nh(¢;) is found and

s is not visited then:
select /; 0

If nh(¢;) is not found then: '

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

3. If Kis L-component then:
trace nh(¢;) for < 4z steps:
If s is visited then:
select ;4

If nh(¢;) is found and

s is not visited then:
select /;

If nh(¢;) is not found then:
abandon K

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:

lit1

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.
2. For each component K check up to a fixed number of steps O(z):
4. If Kis 5-component then:

trace nh(¢;) for < 10z steps:
If r is visited then:

lit1

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
select ¢;_;

lit1

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
select ¢;_;
If t is visited then:

lit1

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
select ¢;_;
If t is visited then:
select £L+1

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
select ¢;_;
If t is visited then:
select £L+1
If nh(¢;) is found and
r, t are not visited then:

liv1

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
select ¢;_;
If t is visited then:
select £L+1
If nh(¢;) is found and
r, t are not visited then:
select /;

liv1

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
select ¢;_;
If t is visited then:
select £L+1
If nh(¢;) is found and
r, t are not visited then:
select /;
If nh(¢;) is not found then:

biv1

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
select ¢;_;
If t is visited then:
select £L+1
If nh(¢;) is found and
r, t are not visited then:
select /;
If nh(¢;) is not found then:
abandon K

15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm description

1. Label the tree T and obtain the components.

2. For each component K check up to a fixed number of steps O(z):

4. If Kis 5-component then:
trace nh(¢;) for < 10z steps:
If ris visited then:
select ¢;_;
If t is visited then:
select Z,’+1
If nh(¢;) is found and
r, t are not visited then:
select /;
If nh(¢;) is not found then:
abandon K

5. Return selected leaves. 15/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results
= Algorithm

Algorithm proofs

Need to show:

Algorithm Correctness

Lemma - Correctness

The algorithm returns at least {5 m leaves with pairwise disjoint
neighborhoods.

16/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm

Algorithm proofs

Need to show:

Algorithm Correctness

Lemma - Correctness

The algorithm returns at least {5 m leaves with pairwise disjoint
neighborhoods.

Algorithm time complexity

Lemma -Time complexity

The algorithm has time complexity O(lTlpn).

16/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results
= Algorithm Correctness

Correctness proof

Intervals
,I.‘i.\‘.\.\
o ‘o
P
. ¢
n
.\ (4, liv1)
¢ o
-’
Ez‘+1

17/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results
= Algorithm Correctness

Correctness proof

Idea:
Lower bound the number of intervals that do not have many unmarked
leaves.
Intervals
-o-H--
I'.. "u
/. .
¢ |
. *
: "
.\ (4, liv1) !
ei []
-
li

17/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm Correctness

Correctness proof

Idea:
Lower bound the number of intervals that do not have many unmarked
leaves.
Intervals
I’..’i.\‘.\l

Lemma - Pigeonhole /,0’. .\

Let M, be the number of marked leaves whose T ,
intervals have at most x unmarked leaves, x € N. ‘ i
Then [M,| = X;—l—f_""lm holds. e"\ ()
i []
a7
€l+1

c is the ratio between unmarked and marked leaves, ¢ = [%1

17/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

= Algorithm Correctness

Correctness proof

Idea:
Upper bound the size of a confined neighborhood by the number of
unmarked leaves in the intervals related to the component.

18/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results
= Algorithm Correctness

Correctness proof

Idea:
Upper bound the size of a confined neighborhood by the number of

unmarked leaves in the intervals related to the component.

Lemma - Size of confined neighborhoods

Let K be component and a marked leaf ¢ with neighborhood nh(¢)
confined K. Then, |nh(¢)| < 100k.

0k is the maximum size of intervals related to the component K. 18/20

On selecting leaves with disjoint neighborhoods in embedded trees

L Results

l—Algoritl'lm time complexity

Time complexity proof

Lemma -Time complexity

The algorithm has time complexity O(lflpn).

m There are ©(m) components.

19/20

On selecting leaves with disjoint neighborhoods in embedded trees
L Results

l—Algoritl'lm time complexity

Time complexity proof

Lemma -Time complexity

The algorithm has time complexity O(lflpn).

m There are ©(m) components.

m For each component, the algorithm does a fixed number of steps
(< 10z).

By using z = [106-‘ = ©(15;), the claim follows.

1—p

19/20

On selecting leaves with disjoint neighborhoods in embedded trees

L conclusion

Conclusion

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7 has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:

i3> 55 m marked leaves with pairwise disjoint neighborhoods.

i) > 10m marked leaves can be found in O(—n) time, p € (0,1).

20/20

On selecting leaves with disjoint neighborhoods in embedded trees

L conclusion

Conclusion

Theorem - Generalized

Let 7 be an embedded binary tree with n leaves where:

i) m of the leaves have been marked.

ii) Each marked leaf of 7 has a neighborhood.

iif) Topologically consecutive marked leaves have disjoint neighborhoods.
Then:

i3> 55 m marked leaves with pairwise disjoint neighborhoods.

i) > 10m marked leaves can be found in O(—n) time, p € (0,1).

Expect it to be helpful in designing deterministic linear time algorithms
for problems related to abstract Voronoi diagrams and other
generalized Voronoi diagrams.

20/20

On selecting leaves with disjoint neighborhoods in embedded trees
- cALDAM 2019

‘—Kolja Junginger, loannis Mantas, Evanthia Papadopoulou

Thank you for your attention!

20/20

	Outline
	Intoduction
	Applications
	Original algorithm

	Outline
	Generalized result

	Preliminaries
	Labelings
	Components

	Results
	Existence
	Algorithm
	Algorithm Correctness
	Algorithm time complexity

	Conclusion

