# Linear-size farthest color Voronoi diagrams: conditions and algorithms

Ioannis Mantas<sup>1</sup> Evanthia Papadopoulou<sup>1</sup> Vera Sacristán<sup>2</sup> Rodrigo I. Silveira<sup>2</sup>

- <sup>1</sup> Università della Svizzera italiana, Lugano, Switzerland
- <sup>2</sup> Universitat Politècnica de Catalunya, Barcelona, Spain

19/3/2019 - Utrecht, Netherlands - EuroCG 2019



# Color Voronoi Diagrams

- Family  $\mathcal{P}$  of m clusters (sets) of points, with n total points.
  - $\rightarrow$  Each cluster has a different color.



# Color Voronoi Diagrams

- Family  $\mathcal{P}$  of m clusters (sets) of points, with n total points.  $\rightarrow$  Each cluster has a different color.
- Distance from a point x to a cluster P is  $d_c(x, P) = \min_{p \in P}(x, p)$ .



# Color Voronoi Diagrams

- Family P of m clusters (sets) of points, with n total points.
  → Each cluster has a different color.
- **Distance** from a point x to a cluster P is  $d_c(x, P) = \min_{p \in P}(x, p)$ .



# Nearest Color Voronoi Diagram (NCVD)

■ The nearest color region of a cluster  $P \in \mathcal{P}$  is:  $\{x \in \mathbb{R}^2 \mid d_c(x, P) < d_c(x, Q), \ \forall Q \in \mathcal{P} \setminus \{P\}\}$ 



# Nearest Color Voronoi Diagram (NCVD)

- The nearest color region of a cluster  $P \in \mathcal{P}$  is:  $\{x \in \mathbb{R}^2 \mid d_c(x, P) < d_c(x, Q), \ \forall Q \in \mathcal{P} \setminus \{P\}\}$
- NCVD is a **min-min** diagram.



## Farthest Color Voronoi Diagram (FCVD)

■ The farthest color region of a cluster  $P \in \mathcal{P}$  is:  $\{x \in \mathbb{R}^2 \mid d_c(x, P) > d_c(x, Q), \ \forall Q \in \mathcal{P} \setminus \{P\}\}$ 



## Farthest Color Voronoi Diagram (FCVD)

- The farthest color region of a cluster  $P \in \mathcal{P}$  is:  $\{x \in \mathbb{R}^2 \mid d_c(x, P) > d_c(x, Q), \ \forall Q \in \mathcal{P} \setminus \{P\}\}$
- FCVD is a max-min diagram.



## FCVD History

• Construction algorithm  $O(mn \log n)$ . Worst case complexity  $\Omega(mn)$  -  $O(mn\alpha(mn))$ . [Huttenlocher, Kedem and Sharir 1993]

$$m = |\mathcal{P}|$$

$$n = \sum_{P_i \in \mathcal{P}} |P_i|$$

## FCVD History

- Construction algorithm  $O(mn \log n)$ . Worst case complexity  $\Omega(mn) - O(mn\alpha(mn))$ . [Huttenlocher, Kedem and Sharir 1993]
- Worst case combinatorial complexity  $\Theta(mn)$ . [Abellanas et al. 2006]

$$m = |\mathcal{P}|$$

$$n = \sum_{P_i \in \mathcal{P}} |P_i|$$

## FCVD History

- Construction algorithm  $O(mn \log n)$ . Worst case complexity  $\Omega(mn) - O(mn\alpha(mn))$ . [Huttenlocher, Kedem and Sharir 1993]
- Worst case combinatorial complexity  $\Theta(mn)$ . [Abellanas et al. 2006]
- Special cases.[Bae 2012, Claverol et al. 2017, Iacono et al. 2017]

$$m = |\mathcal{P}|$$

$$n = \sum_{P_i \in \mathcal{P}} |P_i|$$

## Motivation - Applications

- Minimum Hausdorff distance between two sets of points. [Huttenlocher et al. 1993]
- Facility location with multiple types of facilities. [Abellanas et al. 2006]
- Euclidean Bottleneck Steiner tree. [Bae et al. 2010]
- Sensor deployment in wireless networks. [Lee et al. 2010]
- Stabbing circles for segments. [Claverol et al. 2017]

## FCVD relation to Hausdorff Voronoi Diagram

Hausdorff Voronoi Diagram
A min-max diagram - the dual of the FCVD.

# FCVD relation to Hausdorff Voronoi Diagram

Hausdorff Voronoi Diagram

A **min-max** diagram - the *dual* of the FCVD. Extensively studied:

- → Envelopes in 3 dimensions [Edelsbrunner et al. 1989]
- → Divide and Conquer [Papadopoulou & Lee 2004]
- → Plane Sweep [Papadopoulou 2004]
- → Randomized Incremental [Arseneva & Papadopoulou 2018]

## FCVD relation to Hausdorff Voronoi Diagram

- Hausdorff Voronoi Diagram
  - A min-max diagram the dual of the FCVD. Extensively studied:
    - → Envelopes in 3 dimensions [Edelsbrunner et al. 1989]
    - → Divide and Conquer [Papadopoulou & Lee 2004]
    - → Plane Sweep [Papadopoulou 2004]
    - → Randomized Incremental [Arseneva & Papadopoulou 2018]

■ FCVD can be computed in  $O(n^2)$ , by adapting the algorithm of [Edelsbrunner et al. 1989].

```
Results
```

Summary of results

# Summary of results

Structural properties of the FCVD.

```
Results
```

Summary of results

# Summary of results

- Structural properties of the FCVD.
- **Sufficient conditions** for FCVD to have O(n) combinatorial complexity.

# Summary of results

- Structural properties of the FCVD.
- **Sufficient conditions** for FCVD to have O(n) combinatorial complexity.
- Construction algorithms when these condition are met.

Structural Properties

## Color bisectors

lacktriangle The **color bisector** of clusters P and Q is:

$$b_c(P,Q) = \{x \in \mathbb{R}^2 \mid d_c(x,P) = d_c(x,Q)\}$$

## Color bisectors

- The **color bisector** of clusters P and Q is:  $b_c(P,Q) = \{x \in \mathbb{R}^2 \mid d_c(x,P) = d_c(x,Q)\}$
- $b_c(P,Q)$  is a subgraph of the diagram  $VD(P \cup Q)$ .



#### Color bisectors

- The **color bisector** of clusters P and Q is:  $b_c(P,Q) = \{x \in \mathbb{R}^2 \mid d_c(x,P) = d_c(x,Q)\}$
- $b_c(P, Q)$  is a subgraph of the diagram  $VD(P \cup Q)$ .



→ It consists of cycles and unbounded chains.

#### Color bisectors

- The **color bisector** of clusters P and Q is:  $b_c(P,Q) = \{x \in \mathbb{R}^2 \mid d_c(x,P) = d_c(x,Q)\}$
- $b_c(P,Q)$  is a subgraph of the diagram  $VD(P \cup Q)$ .



→ It consists of cycles and unbounded chains.





- Results
  - LStructural Properties



- Results
  - Structural Properties

- Introduced for the Hausdorff VD [Papadopoulou & Lee 2004].
- 1 to 1 correspondence: **hull edges unbounded edges** of FCVD.



- Results
  - Structural Properties

- Introduced for the Hausdorff VD [Papadopoulou & Lee 2004].
- 1 to 1 correspondence: **hull edges unbounded edges** of FCVD.



- Introduced for the Hausdorff VD [Papadopoulou & Lee 2004].
- 1 to 1 correspondence: **hull edges unbounded edges** of FCVD.



- Introduced for the Hausdorff VD [Papadopoulou & Lee 2004].
- 1 to 1 correspondence: **hull edges unbounded edges** of FCVD.



- Results
  - Structural Properties

- Introduced for the Hausdorff VD [Papadopoulou & Lee 2004].
- 1 to 1 correspondence: **hull edges unbounded edges** of FCVD.



- Introduced for the Hausdorff VD [Papadopoulou & Lee 2004].
- 1 to 1 correspondence: **hull edges unbounded edges** of FCVD.



- Introduced for the Hausdorff VD [Papadopoulou & Lee 2004].
- 1 to 1 correspondence: **hull edges unbounded edges** of FCVD.



- Introduced for the Hausdorff VD [Papadopoulou & Lee 2004].
- 1 to 1 correspondence: **hull edges unbounded edges** of FCVD.



## Abstract Voronoi diagrams

#### Abstract Voronoi diagrams [Klein 1989]

Voronoi diagrams are defined on a system of a bisectors that satisfy a set of axioms. For every  $\mathcal{P}'\subseteq\mathcal{P}$ :

- A1. Each bisector is an unbounded Jordan curve.
- A2. Each nearest neighbor region is non-empty and connected.
- A3. The union of all nearest neighbor regions covers the entire plane.

## Abstract Voronoi diagrams

#### Abstract Voronoi diagrams [Klein 1989]

Voronoi diagrams are defined on a system of a bisectors that satisfy a set of axioms. For every  $\mathcal{P}' \subseteq \mathcal{P}$ :

- A1. Each bisector is an unbounded Jordan curve.
- A2. Each nearest neighbor region is non-empty and connected.
- A3. The union of all nearest neighbor regions covers the entire plane.

A family of clusters  $\mathcal{P}$  is called **admissible**, if the color bisectors satisfy axioms A1-A3.

Results

Conditions for linear-size diagrams

#### Admissible families

#### Proposition - Structure and complexity

If  $\mathcal P$  is an admissible family, then  $\mathsf{FCVD}(\mathcal P)$  is a tree of O(n) total combinatorial complexity.

Results

Conditions for linear-size diagrams

#### Admissible families

#### Proposition - Structure and complexity

If  $\mathcal P$  is an admissible family, then  $\mathsf{FCVD}(\mathcal P)$  is a tree of O(n) total combinatorial complexity.

#### Proposition - Condition

A linearly-separable family  $\mathcal P$  is admissible, if and only if each region in  $\mathsf{NCVD}(\mathcal P)$  is connected.

Results

Conditions for linear-size diagrams

#### Admissible families

#### Proposition - Structure and complexity

If  $\mathcal P$  is an admissible family, then  $\mathsf{FCVD}(\mathcal P)$  is a tree of O(n) total combinatorial complexity.

#### Proposition - Condition

A linearly-separable family  $\mathcal P$  is admissible, if and only if each region in  $\mathsf{NCVD}(\mathcal P)$  is connected.

#### Corollary - Admissible check

We can check if a family P is admissible in  $O(n \log n)$  time.

## Disk-separable families

A family of clusters  $\mathcal{P}$  is **disk-separable** if for every  $P \in \mathcal{P}$  there exists a disk containing P and no point from other cluster.



Results

Conditions for linear-size diagrams

## Disk-separable families

A family of clusters  $\mathcal{P}$  is **disk-separable** if for every  $P \in \mathcal{P}$  there exists a disk containing P and no point from other cluster.



#### Proposition - Sufficient condition

If a family  ${\mathcal P}$  is disk-separable, then  ${\mathcal P}$  is also admissible.

Conditions for linear-size diagrams

## Linearly-separable families

A family of clusters  $\mathcal{P}$  is **linearly** - **separable** if all clusters have pairwise disjoint convex hulls.



## Linearly-separable families

A family of clusters  $\mathcal{P}$  is **linearly** - **separable** if all clusters have pairwise disjoint convex hulls.



#### Lemma - Unbounded faces

If  $\mathcal P$  is a linearly-separable family, then  $\mathsf{FCVD}(\mathcal P)$  has O(m) unbounded faces.

## Linearly-separable families

A family of clusters  $\mathcal{P}$  is **linearly** - **separable** if all clusters have pairwise disjoint convex hulls.



#### Lemma - Unbounded faces

If  $\mathcal P$  is a linearly-separable family, then  $\mathsf{FCVD}(\mathcal P)$  has O(m) unbounded faces.

#### Lemma - Bounded faces

If  $\mathcal{P}$  is a linearly-separable family, then  $\mathsf{FCVD}(\mathcal{P})$  has  $O(n+s(\mathcal{P}))$  bounded faces.

## Linearly-separable families

A family of clusters  $\mathcal{P}$  is **linearly** - **separable** if all clusters have pairwise disjoint convex hulls.



#### Lemma - Unbounded faces

If  $\mathcal P$  is a linearly-separable family, then  $\mathsf{FCVD}(\mathcal P)$  has O(m) unbounded faces.

#### Lemma - Bounded faces

If  $\mathcal{P}$  is a linearly-separable family, then FCVD( $\mathcal{P}$ ) has  $O(n + s(\mathcal{P}))$  bounded faces. (and overall combinatorial complexity)

Conditions for linear-size diagrams

# Straddling number

A Voronoi edge e of VD(P), part of bisector $(p_1, p_2)$ , is **straddled** by a cluster Q,



A Voronoi edge e of VD(P), part of bisector $(p_1, p_2)$ , is **straddled** by a cluster Q, if  $\exists q_1, q_2 \in Q$  such that:

i) The line through  $p_1, p_2$  intersects the segment  $\overline{q_1, q_2}$ .



A Voronoi edge e of VD(P), part of bisector $(p_1, p_2)$ , is **straddled** by a cluster Q, if  $\exists q_1, q_2 \in Q$  such that:

- i)The line through  $p_1, p_2$  intersects the segment  $\overline{q_1, q_2}$ .
- ii)The centers of  $D(p_1, p_2, q_1)$  and  $D(p_1, p_2, q_2)$  lie on e.



A Voronoi edge e of VD(P), part of bisector $(p_1, p_2)$ , is **straddled** by a cluster Q, if  $\exists q_1, q_2 \in Q$  such that:

- i)The line through  $p_1, p_2$  intersects the segment  $\overline{q_1, q_2}$ .
- ii) The centers of  $D(p_1, p_2, q_1)$  and  $D(p_1, p_2, q_2)$  lie on e.



The number of all clusters that straddle e is s(e).

The **straddling number** of  $\mathcal{P}$  is  $s(\mathcal{P}) = \sum_{P \in \mathcal{P}} \sum_{e \in VD(P)} s(e)$ .

A Voronoi edge e of VD(P), part of bisector $(p_1, p_2)$ , is **straddled** by a cluster Q, if  $\exists q_1, q_2 \in Q$  such that:

- i)The line through  $p_1, p_2$  intersects the segment  $\overline{q_1, q_2}$ .
- ii) The centers of  $D(p_1, p_2, q_1)$  and  $D(p_1, p_2, q_2)$  lie on e.



The number of all clusters that straddle e is s(e).

The **straddling number** of  $\mathcal{P}$  is  $s(\mathcal{P}) = \sum_{e} \sum_{e} s(e)$ .

 $P \in \mathcal{P} \ e \in VD(P)$ 

#### Corollary - Condition

If a linearly-separable family  $\mathcal{P}$  has  $s(\mathcal{P}) = O(n)$ , then  $FCVD(\mathcal{P})$  has O(n) combinatorial complexity.

## Algorithm description

#### Divide & Conquer algorithm

- 1. **Split** family of clusters  $\mathcal{P}$  in two parts  $\mathcal{P}_L$ ,  $\mathcal{P}_R$ .
- 2. Recursively compute  $FCVD(P_L)$  and  $FCVD(P_R)$
- 3. Merge  $FCVD(\mathcal{P}_L)$ ,  $FCVD(\mathcal{P}_R)$  into  $FCVD(\mathcal{P})$ .

## Algorithm description

#### Divide & Conquer algorithm

- 1. **Split** family of clusters  $\mathcal{P}$  in two parts  $\mathcal{P}_L$ ,  $\mathcal{P}_R$ .
- 2. Recursively compute  $FCVD(\mathcal{P}_L)$  and  $FCVD(\mathcal{P}_R)$
- 3. Merge  $FCVD(\mathcal{P}_L)$ ,  $FCVD(\mathcal{P}_R)$  into  $FCVD(\mathcal{P})$ .

The **merge curve** consists of bounded & unbounded components. For each component:

- a. Find a starting point.
- b. Trace the component.

### Merge curve construction

a. Finding starting points.

b. Tracing components.

### Merge curve construction

- a. Finding starting points.
  - $\rightarrow$  Unbounded components can be found in O(n) time using the cluster hull.
  - → Bounded components ???
- b. Tracing components.

### Merge curve construction

- a. Finding starting points.
  - $\rightarrow$  Unbounded components can be found in O(n) time using the cluster hull.
  - $\rightarrow$  Bounded components ???
- b. Tracing components.
  - $\rightarrow$  A component M can be traced in O(|M|) time.

```
Results
```

L Algorithms

## Algorithms

#### Theorem - Admissible families

If  $\mathcal P$  is an admissible family,  $\mathsf{FCVD}(\mathcal P)$  can be constructed in  $O(n\log n)$  time.

```
Results
```

— Algorithms

### Algorithms

#### Theorem - Admissible families

If  $\mathcal P$  is an admissible family,  $\mathsf{FCVD}(\mathcal P)$  can be constructed in  $O(n\log n)$  time.

**Key:** FCVD(P) is a tree, so there are no bounded components.

## Algorithms

#### Theorem - Admissible families

If  $\mathcal{P}$  is an admissible family,  $FCVD(\mathcal{P})$  can be constructed in  $O(n \log n)$  time.

**Key:** FCVD(P) is a tree, so there are no bounded components.

#### Theorem - Linearly-separable families

If  $\mathcal{P}$  a linearly-separable family where each cluster has O(1)straddles, FCVD( $\mathcal{P}$ ) can be constructed in  $O(n \log^2 n)$ .

### Algorithms

#### Theorem - Admissible families

If  $\mathcal{P}$  is an admissible family,  $FCVD(\mathcal{P})$  can be constructed in  $O(n \log n)$  time.

**Key:** FCVD(P) is a tree, so there are no bounded components.

#### Theorem - Linearly-separable families

If  $\mathcal{P}$  a linearly-separable family where each cluster has O(1)straddles, FCVD( $\mathcal{P}$ ) can be constructed in  $O(n \log^2 n)$ .

**Key:** The bounded components can be found in  $O(n \log n)$  time [lacono et al. 2017].

#### Future work

- Settle FCVD complexity of linearly-separable families.
  - $\rightarrow$  We conjecture it is  $\Theta(mn)$  in the worst case.

■ **Design**  $o(n^2)$  **algorithm** when FCVD has O(n) complexity.

└ Ioannis Mantas, Evanthia Papadopoulou, Vera Sacristán, Rodrigo I. Silveira └ EuroCG 2019

## Thank you for your attention!

