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Linear-size farthest color Voronoi diagrams: conditions and algorithms

Problem Description

Color Voronoi diagrams

Color Voronoi Diagrams

Family P of m clusters (sets) of points, with n total points.
→ Each cluster has a di�erent color.

Distance from a point x to a cluster P is
dc(x ,P) = minp∈P(x , p).
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Problem Description

Color Voronoi diagrams

Nearest Color Voronoi Diagram (NCVD)

The nearest color region of a cluster P ∈ P is:
{x ∈ R2 | dc(x ,P)< dc(x ,Q), ∀Q ∈ P \ {P}}

NCVD is a min-min diagram.
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Problem Description

Motivation & related work

FCVD History

Construction algorithm O(mn log n).
Worst case complexity Ω(mn) - O(mnα(mn)).
[Huttenlocher, Kedem and Sharir 1993]

Worst case combinatorial complexity Θ(mn).
[Abellanas et al. 2006]

Special cases.
[Bae 2012, Claverol et al. 2017, Iacono et al. 2017]

m = |P|
n =

∑
Pi∈P |Pi |
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Problem Description

Motivation & related work

Motivation - Applications

Minimum Hausdor� distance between two sets of points.
[Huttenlocher et al. 1993]

Facility location with multiple types of facilities.
[Abellanas et al. 2006]

Euclidean Bottleneck Steiner tree. [Bae et al. 2010]

Sensor deployment in wireless networks. [Lee et al. 2010]

Stabbing circles for segments. [Claverol et al. - 2017]
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Problem Description

Motivation & related work

FCVD relation to Hausdor� Voronoi Diagram

Hausdor� Voronoi Diagram

A min-max diagram - the dual of the FCVD.

Extensively studied:

→ Envelopes in 3 dimensions [Edelsbrunner et al. 1989]
→ Divide and Conquer [Papadopoulou & Lee 2004]
→ Plane Sweep [Papadopoulou 2004]
→ Randomized Incremental [Arseneva & Papadopoulou 2018]

FCVD can be computed in O(n2), by adapting the algorithm of
[Edelsbrunner et al. 1989].
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Results

Summary of results

Summary of results

Structural properties of the FCVD.

Su�cient conditions for FCVD to have O(n) combinatorial
complexity.

Construction algorithms when these condition are met.
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Results

Structural Properties

Color bisectors

The color bisector of clusters P and Q is:
bc(P,Q) = {x ∈ R2 | dc(x ,P) = dc(x ,Q)}

bc(P,Q) is a subgraph of the diagram VD(P ∪ Q).

→ It consists of cycles and
unbounded chains.

→ Two bisectors may intersect
linearly many times.
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Results

Structural Properties

Cluster Hull
The Cluster Hull is a closed (non-simple) polygonal chain that
characterises the unbounded faces of the FCVD.

Introduced for the Hausdor� VD [Papadopoulou & Lee 2004].

1 to 1 correspondence: hull edges - unbounded edges of FCVD.
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Results

Conditions for linear-size diagrams

Abstract Voronoi diagrams

Abstract Voronoi diagrams [Klein 1989]

Voronoi diagrams are de�ned on a system of a bisectors that
satisfy a set of axioms. For every P ′ ⊆ P:
A1. Each bisector is an unbounded Jordan curve.

A2. Each nearest neighbor region is non-empty and connected.

A3. The union of all nearest neighbor regions covers the entire plane.

A family of clusters P is called admissible, if the color bisectors
satisfy axioms A1-A3.
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Results

Conditions for linear-size diagrams

Admissible families

Proposition - Structure and complexity

If P is an admissible family, then FCVD(P) is a tree of O(n) total
combinatorial complexity.

Proposition - Condition

A linearly-separable family P is admissible, if and only if each
region in NCVD(P) is connected.

Corollary - Admissible check

We can check if a family P is admissible in O(n log n) time.
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Results

Conditions for linear-size diagrams

Disk-separable families

A family of clusters P is disk-separable if for every P ∈ P there
exists a disk containing P and no point from other cluster.

Proposition - Su�cient condition

If a family P is disk-separable, then P is also admissible.
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Results

Conditions for linear-size diagrams

Linearly-separable families

A family of clusters P is linearly -
separable if all clusters have pairwise
disjoint convex hulls.

Lemma - Unbounded faces

If P is a linearly-separable family, then FCVD(P) has O(m)
unbounded faces.

Lemma - Bounded faces

If P is a linearly-separable family, then FCVD(P) has O(n + s(P))
bounded faces. (and overall combinatorial complexity)
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Conditions for linear-size diagrams

Straddling number
A Voronoi edge e of VD(P), part of bisector(p1, p2), is straddled
by a cluster Q,

if ∃q1, q2 ∈ Q such that:
i)The line through p1, p2 intersects the segment q1, q2.
ii)The centers of D(p1, p2, q1) and D(p1, p2, q2) lie on e.

p1

p2

e

The number of all clusters that
straddle e is s(e).
The straddling number of P is

s(P) =
∑
P∈P

∑
e∈VD(P)

s(e).

Corollary - Condition

If a linearly-separable family P has
s(P) = O(n), then FCVD(P) has
O(n) combinatorial complexity.
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Results

Algorithms

Algorithm description

Divide & Conquer algorithm

1. Split family of clusters P in two parts PL, PR .

2. Recursively compute FCVD(PL) and FCVD(PR)

3. Merge FCVD(PL), FCVD(PR) into FCVD(P).

The merge curve consists of bounded & unbounded components.
For each component:

a. Find a starting point.

b. Trace the component.
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Results

Algorithms

Merge curve construction

a. Finding starting points.

→ Unbounded components can be found in O(n) time using
the cluster hull.

→ Bounded components ???

b. Tracing components.

→ A component M can be traced in O(|M|) time.
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Algorithms

Theorem - Admissible families

If P is an admissible family, FCVD(P) can be constructed in
O(n log n) time.

Key: FCVD(P) is a tree, so there are no bounded components.

Theorem - Linearly-separable families

If P a linearly-separable family where each cluster has O(1)
straddles, FCVD(P) can be constructed in O(n log2 n).

Key: The bounded components can be found in O(n log n) time
[Iacono et al. 2017].
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Future work

Future work

Settle FCVD complexity of linearly-separable families.
→ We conjecture it is Θ(mn) in the worst case.

Design o(n2) algorithm when FCVD has O(n) complexity.
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