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L Problem Description

L Motivation & related work

Motivation - Applications

Facility location with multiple types of facilities.
Minimum color spanning circle. [Abellanas et al. 2006]

m Minimum Hausdorff distance between two sets of points.
[Huttenlocher et al. 1993]

m Euclidean Bottleneck Steiner tree. [Bae et al. 2010]
m Sensor deployment in wireless networks. [Lee et al. 2010]
m Stabbing circles for segments. [Claverol et al. 2017]
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L Problem Description

L Motivation & related work

Hausdorff Voronoi Diagram

m Min-Max diagram (nearest cluster, farthest distance).
The "dual" of the FCVD.

Extensively studied:

— Envelopes in 3 dimensions [Edelsbrunner et al. 1989]

— Divide and Conquer [Papadopoulou & Lee 2004]

— Plane Sweep [Papadopoulou 2004]

— Randomized Incremental [Arseneva & Papadopoulou 2019]
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I—SI:ru::turaI Properties

Combinatorial complexity

What is the complexity of FCVD(P)?
Need to determine the number of bounded and unbounded faces.

m Unbounded faces?
FCVD(P) has O(n) unbounded faces.
Key: Cluster hulls.

m Bounded faces?
Key: Define straddles.
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I—Sl:ru::tural Properties

Refined combinatorial complexity

m FCVD(P) has O(n+ s(P)) bounded faces.

Key: They appear on edges of the internal subdivision
consecutively induced by distinct clusters.

Theorem - Combinatorial complexity

>7< ,,,,,,, HH ,,,,,,,,,,,, FCVD(P) has O(n + s(P)) complexity.

Note: Refine O(mn) upper bound
[Abellanas et al. 2006].

e D1
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|—Ct:mditit:)ns for linear-size diagrams

Conditions for linear-size diagrams

If FCVD(P) has ©(n?) size, the O(n?) algorithm is optimal.

We are interested in:
m Conditions for O(n) combinatorial complexity.

m o(n?)-time algorithms for these cases.
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Admissible cluster 1/2

‘P is admissible, if it falls under the framework of Abstract
Voronoi diagrams [Klein 1989].

P is admissible, if for every P’ C P:
1) Color bisectors are unbounded.
2) Nearest color regions are non-empty and connected.

3) The union of all nearest color regions covers the plane.

m If P is admissible, FCVD(P) is a tree of O(n) complexity.
Follows [Mehlhorn et al. 2001]
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Key: Check region connectivity only for P.
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Admissible cluster 2/2

Theorem - Necessary & sufficient condition

P is admissible if and only if:
(1) each region in NCVD(P) is connected.
(2) no cluster is contained in the convex hull of another cluster.

Key: Check region connectivity only for P.

m If P is linearly separable, we can decide if PP is admissible in
O(nlog n) time.

Key: Check region connectivity using NCVD(P).
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Disk-separable clusters

P is disk-separable if:
for any P € P there exists a disk containing P and no other point.

Theorem - Sufficient condition

If P is disk-separable, then P is admissible.

Key: Disk-separability implies region connectivity. 16/25
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|—A lower bound for linearly separable clusters

Lower bound Construction 1/2

We construct a family P = {P; = {/;, ui} }.
L;: lower point U;: upper point.
Intuitional description:
Cluster L;, Ui — Segment L;U;
L;Us: vertical segment of length 2™

|
|
m L;U;: vertical segment with U; = U;_;
m Halve length and translate upwards.

|

Perform some "rotation” around upper points
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Lower bound Construction 2/2

Properties of the constructed set P
m P is linearly separable
m s(P) = ©(m?)
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L Results

I—A lower bound for linearly separable clusters

Lower bound Construction 2/2

Properties of the constructed set P
m P is linearly separable
m s(P) = ©(m?)
m Every straddle induces a vertex to FCVD(P).

Combining Q(m?) with trivial Q(n) bound:

Theorem - Lower bound

If P is linearly separable, FCVD(P) has Q(n + m?) complexity in
the worst case.
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[ Construction Algorithms

Algorithm description

Divide & Conquer algorithm:
1. Divide P in two sets P4 and Pg.
2. Recursively compute FCVD(P4) and FCVD(P5).
3. Merge FCVD(PA) and FCVD('PB) into FCVD(PA UPB).
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Algorithm description

Divide & Conquer algorithm:
1. Divide P in two sets P4 and Pg.
2. Recursively compute FCVD(P4) and FCVD(P5).
3. Merge FCVD(P4) and FCVD(Pg) into FCVD(Pa U Ppg).

Construct the merge curve.
— Can have many components.
— Can be bounded and unbounded.
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Constructing the merge curve

For each component:
a. Find a starting point.

b. Trace the component.
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Constructing the merge curve

For each component:
a. Find a starting point.

b. Trace the component.

m Tracing a component takes linear time.

Key: Using a visibility property
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[ Construction Algorithms

Constructing the merge curve

For each unbounded component:
a. Find a starting point.

b. Trace the component.

m Finding starting points on unbounded components takes
O(n) time at each step.

Key: Merging cluster hulls before merging diagrams, similar to
[Papadopoulou & Lee 2004].
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Starting points on bounded components

For each bounded component:

a. Find a starting point.

Key: The internal subdivision of every bounded face is a tree.
Need to search for edges of the internal subdivision.
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[ Construction Algorithms

Starting points on bounded components

For each bounded component:

a. Find a starting point.

Key: The internal subdivision of every bounded face is a tree.
Need to search for edges of the internal subdivision.

— Use data structure of [lacono et al. 2017]
— O(nlog n) time to build at each step.

— For each occurrence of an edge: O(log? n) search procedure.
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Algorithm: General case

Theorem - General algorithm

FCVD(P) can be constructed in O((n + s(P)) log® n) time.

Key: Make O(log? n) search only for potential bounded faces.
Note: Faster than existing algorithms, if s(P) = O(n).
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[ Construction Algorithms

Algorithm: Admissible clusters

Theorem - Admissible clusters

If P is admissible, FCVD(P) can be constructed in O(nlog n) time.

Key: FCVD(P) is a tree, so no bounded components.
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Conclusions

Farthest Color Voronoi Diagrams
m Refined combinatorial complexity: straddles.

m Conditions under which FCVD has linear complexity.
m Linear separability: quadratic lower bound.

m Construction algorithms: O((n + s(P)) log® n).
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Thank you for your attention!

Questions?
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