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P: A set of m clusters of points, with n overall points.
→ Each cluster has a color.

Distance from point x to cluster P : dc(x ,P) = minp∈P(x , p).
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Color Voronoi diagrams

Nearest Color Voronoi Diagram (NCVD)

The nearest color region of a cluster P ∈ P is:
{x ∈ R2 | dc(x ,P)< dc(x ,Q), ∀Q ∈ P \ {P}}

Min-Min diagram (nearest cluster, nearest distance).

Nearest point VD ⇒ O(n) complexity, O(n log n) algorithms.
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Problem Description

Motivation & related work

FCVD - Known results

Combinatorial complexity:

Upper bound O(mn) [Abellanas et al. 2006]

Worst case lower bound Ω(mn) [Huttenlocher et al. 1993]

Construction algorithms:

O(mn log n) time [Huttenlocher et al. 1993]

O(n2) time [Edelsbrunner et al. 1989]

Special cases:

[Bae 2012, Claverol et al. 2017, Iacono et al. 2017]

m : number of clusters n : total number of points
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Problem Description

Motivation & related work

Motivation - Applications

Facility location with multiple types of facilities.
Minimum color spanning circle. [Abellanas et al. 2006]

Minimum Hausdor� distance between two sets of points.
[Huttenlocher et al. 1993]

Euclidean Bottleneck Steiner tree. [Bae et al. 2010]

Sensor deployment in wireless networks. [Lee et al. 2010]

Stabbing circles for segments. [Claverol et al. 2017]
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Problem Description

Motivation & related work

Hausdor� Voronoi Diagram

Min-Max diagram (nearest cluster, farthest distance).

The "dual" of the FCVD.

Extensively studied:

→ Envelopes in 3 dimensions [Edelsbrunner et al. 1989]
→ Divide and Conquer [Papadopoulou & Lee 2004]
→ Plane Sweep [Papadopoulou 2004]
→ Randomized Incremental [Arseneva & Papadopoulou 2019]



7/25

Farthest Color Voronoi diagrams: conditions and algorithms

Problem Description

Motivation & related work

Hausdor� Voronoi Diagram

Min-Max diagram (nearest cluster, farthest distance).

The "dual" of the FCVD.

Extensively studied:

→ Envelopes in 3 dimensions [Edelsbrunner et al. 1989]
→ Divide and Conquer [Papadopoulou & Lee 2004]
→ Plane Sweep [Papadopoulou 2004]
→ Randomized Incremental [Arseneva & Papadopoulou 2019]



8/25

Farthest Color Voronoi diagrams: conditions and algorithms

Results

Structural Properties

Color bisectors

The color bisector of clusters P and Q is:
bc(P,Q) = {x ∈ R2 | dc(x ,P) = dc(x ,Q)}

bc(P,Q) is a subgraph of the diagram VD(P ∪ Q).

→ It consists of bounded and
unbounded components.

→ Two bisectors may intersect
linearly many times.
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Results

Structural Properties

Cluster Hull
The Cluster Hull is a closed (non-simple) polygonal chain.

O(n) size - O(n log n) time construction.

De�ned for the Hausdor� VD [Papadopoulou & Lee 2004]

Characterizes also the unbounded faces of FCVD(P).
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Structural Properties

Combinatorial complexity

What is the complexity of FCVD(P)?
Need to determine the number of bounded and unbounded faces.

Unbounded faces?

FCVD(P) has O(n) unbounded faces.

Key: Cluster hulls.

Bounded faces?

Key: De�ne straddles.
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Results

Structural Properties

Straddles

Cluster Q (or q1, q2 ∈ Q), straddles p1, p2 ∈ P if:
→ q1q2 intersects L(p1, p2).

s(p1, p2): number of clusters that straddle p1, p2.

p1

p2

q1

q2

L(p1, p2)

q1q2

s(P) : straddling number of P

s(P) =
∑
Pi∈P

∑
(pj ,pk )∈Pi

s(pj , pk)

s(P) = O(mn)
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Results

Structural Properties

Re�ned combinatorial complexity

FCVD(P) has O(n + s(P)) bounded faces.

Key: They appear on edges of the internal subdivision
consecutively induced by distinct clusters.

p1

p2

bis(p1, p2)

q1 ∈ Q

q1 ∈ Q

Theorem - Combinatorial complexity

FCVD(P) has O(n + s(P)) complexity.

Note: Re�ne O(mn) upper bound
[Abellanas et al. 2006].
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Results

Conditions for linear-size diagrams

Conditions for linear-size diagrams

If FCVD(P) has Θ(n2) size, the O(n2) algorithm is optimal.

We are interested in:

Conditions for O(n) combinatorial complexity.

o(n2)-time algorithms for these cases.
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Results

Conditions for linear-size diagrams

Admissible cluster 1/2

P is admissible, if it falls under the framework of Abstract
Voronoi diagrams [Klein 1989].

P is admissible, if for every P ′ ⊆ P:
1) Color bisectors are unbounded.

2) Nearest color regions are non-empty and connected.

3) The union of all nearest color regions covers the plane.

If P is admissible, FCVD(P) is a tree of O(n) complexity.

Follows [Mehlhorn et al. 2001]
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Results

Conditions for linear-size diagrams

Admissible cluster 2/2

Theorem - Necessary & su�cient condition

P is admissible if and only if:
(1) each region in NCVD(P) is connected.
(2) no cluster is contained in the convex hull of another cluster.

Key: Check region connectivity only for P.

If P is linearly separable, we can decide if P is admissible in
O(n log n) time.

Key: Check region connectivity using NCVD(P).



15/25

Farthest Color Voronoi diagrams: conditions and algorithms

Results

Conditions for linear-size diagrams

Admissible cluster 2/2

Theorem - Necessary & su�cient condition

P is admissible if and only if:
(1) each region in NCVD(P) is connected.
(2) no cluster is contained in the convex hull of another cluster.

Key: Check region connectivity only for P.

If P is linearly separable, we can decide if P is admissible in
O(n log n) time.

Key: Check region connectivity using NCVD(P).



16/25

Farthest Color Voronoi diagrams: conditions and algorithms

Results

Conditions for linear-size diagrams

Disk-separable clusters

P is disk-separable if:
for any P ∈ P there exists a disk containing P and no other point.

Theorem - Su�cient condition

If P is disk-separable, then P is admissible.

Key: Disk-separability implies region connectivity.
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Conditions for linear-size diagrams

Linearly separable clusters

P is linearly separable if:
clusters have pairwise disjoint convex hulls.

Is linear separability a condition for P:

to be admissible?

No.

to have O(n) size?

No.



17/25

Farthest Color Voronoi diagrams: conditions and algorithms

Results

Conditions for linear-size diagrams

Linearly separable clusters

P is linearly separable if:
clusters have pairwise disjoint convex hulls.

Is linear separability a condition for P:
to be admissible?

No.

to have O(n) size?

No.



17/25

Farthest Color Voronoi diagrams: conditions and algorithms

Results

Conditions for linear-size diagrams

Linearly separable clusters

P is linearly separable if:
clusters have pairwise disjoint convex hulls.

Is linear separability a condition for P:
to be admissible?

No.

to have O(n) size?

No.



17/25

Farthest Color Voronoi diagrams: conditions and algorithms

Results

Conditions for linear-size diagrams

Linearly separable clusters

P is linearly separable if:
clusters have pairwise disjoint convex hulls.

Is linear separability a condition for P:
to be admissible?

No.

to have O(n) size?

No.



17/25

Farthest Color Voronoi diagrams: conditions and algorithms

Results

Conditions for linear-size diagrams

Linearly separable clusters

P is linearly separable if:
clusters have pairwise disjoint convex hulls.

Is linear separability a condition for P:
to be admissible?

No.

to have O(n) size?

No.



18/25

Farthest Color Voronoi diagrams: conditions and algorithms

Results

A lower bound for linearly separable clusters

Lower bound Construction 1/2

We construct a family P = {Pi = {li , ui}}.
Li : lower point Ui : upper point.

Intuitional description:

Cluster Li ,Ui → Segment LiUi

L1U1: vertical segment of length 2m

LiUi : vertical segment with Ui = Ui−1

Halve length and translate upwards.

Perform some "rotation" around upper points
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A lower bound for linearly separable clusters

Lower bound Construction 2/2

Properties of the constructed set P
P is linearly separable

s(P) = Θ(m2)

Every straddle induces a vertex to FCVD(P).

Combining Ω(m2) with trivial Ω(n) bound:

Theorem - Lower bound

If P is linearly separable, FCVD(P) has Ω(n + m2) complexity in
the worst case.
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Construction Algorithms

Algorithm description

Divide & Conquer algorithm:

1. Divide P in two sets PA and PB .
2. Recursively compute FCVD(PA) and FCVD(PB).

3. Merge FCVD(PA) and FCVD(PB) into FCVD(PA ∪ PB).

Construct the merge curve.

→ Can have many components.

→ Can be bounded and unbounded.
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Construction Algorithms

Constructing the merge curve

For each

unbounded

component:

a. Find a starting point.

b. Trace the component.

Tracing a component takes linear time.

Key: Using a visibility property

Finding starting points on unbounded components takes
O(n) time at each step.

Key: Merging cluster hulls before merging diagrams, similar to
[Papadopoulou & Lee 2004].
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b. Trace the component.
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Construction Algorithms

Starting points on bounded components

For each bounded component:

a. Find a starting point.

Key: The internal subdivision of every bounded face is a tree.
Need to search for edges of the internal subdivision.

→ Use data structure of [Iacono et al. 2017]

→ O(n log n) time to build at each step.

→ For each occurrence of an edge: O(log2 n) search procedure.
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Results

Construction Algorithms

Algorithm: General case

Theorem - General algorithm

FCVD(P) can be constructed in O((n + s(P)) log3 n) time.

Key: Make O(log2 n) search only for potential bounded faces.
Note: Faster than existing algorithms, if s(P) = O(n).
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Results

Construction Algorithms

Algorithm: Admissible clusters

Theorem - Admissible clusters

If P is admissible, FCVD(P) can be constructed in O(n log n) time.

Key: FCVD(P) is a tree, so no bounded components.
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Conditions under which FCVD has linear complexity.

Linear separability: quadratic lower bound.

Construction algorithms: O((n + s(P)) log3 n).
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Thank you for your attention!

Questions?
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