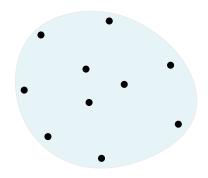
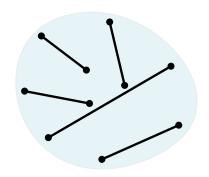
New Variants of **Perfect Non-crossing Matchings**

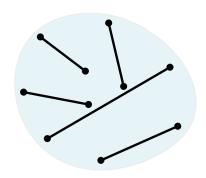
Ioannis Mantas¹ Marko Savić² Hendrik Schrezenmaier³

Università della Svizzera italiana, Lugano, Switzerland
 University of Novi Sad, Serbia
 Technische Universität Berlin, Germany

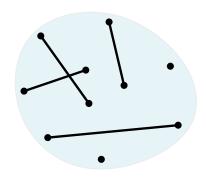
CALDAM 2021







- ► Perfect: All points are matched
- ▶ Non-crossing: No two edges of the matching intersect

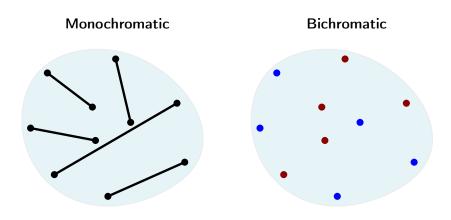


- ► Perfect: All points are matched
- ▶ Non-crossing: No two edges of the matching intersect

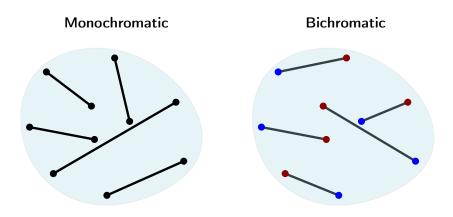
Monochromatic



- ► Perfect: All points are matched
- Non-crossing: No two edges of the matching intersect



- ► Perfect: All points are matched
- ▶ Non-crossing: No two edges of the matching intersect



- Perfect: All points are matched
- ▶ Non-crossing: No two edges of the matching intersect

Motivation

Some applications:

- Operations Research [Assignment problem]
- ▶ VLSI design [Cong et al. 1993]
- ► Computational Biology [Colannino et al. 2006]
- ► Map construction/comparison [Eppstein et al. 2015]

Motivation

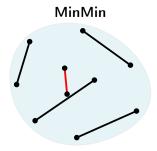
Some applications:

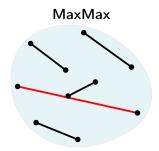
- Operations Research [Assignment problem]
- ▶ VLSI design [Cong et al. 1993]
- ► Computational Biology [Colannino et al. 2006]
- ► Map construction/comparison [Eppstein et al. 2015]

Computation:

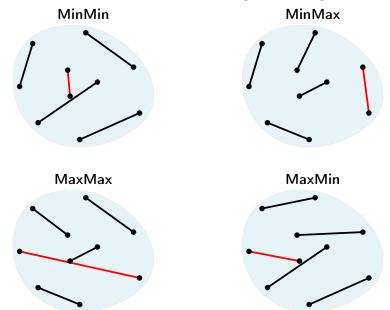
- ▶ Arbitrary matching: $O(n \log n)$ time [Hershberger & Suri 1992]
- Often arbitrary not sufficient... optimization criterion

Optimization of Perfect Non-crossing matchings





Optimization of Perfect Non-crossing matchings



Known Results

Monochromatic	MinMax	
General Position Convex Position Points on circle	\mathcal{NP} -hard $O(n^2)$ $O(n)$	[Abu-Affash et al. 2014] [Savić & Stojaković 2017] [Savić & Stojaković 2017]
Bichromatic	MinMax	
General Position Convex Position Points on circle	\mathcal{NP} -hard $O(n^2)$ $O(n)$	[Carlsson et al. 2015] [Savić & Stojaković 2018] [Savić & Stojaković 2018]

Known Results

Monochromatic	MinMax	
General Position Convex Position Points on circle	\mathcal{NP} -hard $O(n^2)$ $O(n)$	[Abu-Affash et al. 2014] [Savić & Stojaković 2017] [Savić & Stojaković 2017]
Bichromatic	MinMax	
General Position Convex Position Points on circle	\mathcal{NP} -hard $O(n^2)$ $O(n)$	[Carlsson et al. 2015] [Savić & Stojaković 2018] [Savić & Stojaković 2018]

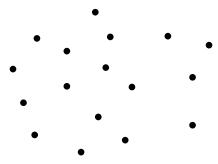
MinSum (Euclidean Assignment problem)

- ▶ Gen. Pos. Monochromatic: $O(n^{1.5} \log n)$ [Varadarajan 1998]
- ▶ Gen. Pos. Bichromatic: $O(n^2 \text{ polylog } n)$ [Kaplan et al. 2020]
- ► Convex position: $O(n \log n)$ [Marcotte & Suri 1991]

Known Results

Monochromatic	MinMin	MaxMax	MinMax	MaxMin
General Position Convex Position Points on circle			\mathcal{NP} -hard $O(n^2)$ $O(n)$	
Bichromatic	MinMin	MaxMax	MinMax	MaxMin
General Position Convex Position			\mathcal{NP} -hard $O(n^2)$ $O(n)$	

Points in General position



Monochromatic points: Feasibility criterion

Definition

(v, w) is feasible if it is contained in a matching.

Lemma

(v, w) is infeasible iff

- v and w on the convex hull CH,
- odd number of points on each side of the connecting line.

feasible

Monochromatic points: Feasibility criterion

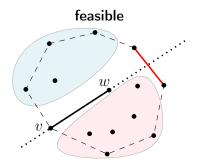
Definition

(v, w) is feasible if it is contained in a matching.

Lemma

(v, w) is infeasible iff

- v and w on the convex hull CH,
- odd number of points on each side of the connecting line.



Monochromatic points: Feasibility criterion

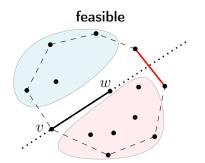
Definition

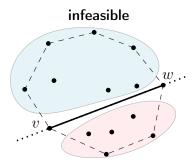
(v, w) is feasible if it is contained in a matching.

Lemma

(v, w) is infeasible iff

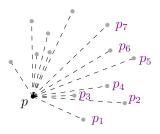
- v and w on the convex hull CH.
- odd number of points on each side of the connecting line.





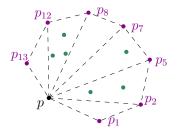
Weak Radial Orderings

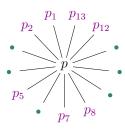
▶ Radial ordering of p: sorted order of $P \setminus p$ by angle around p



Weak Radial Orderings

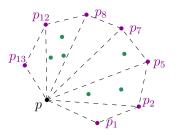
- ▶ Radial ordering of p: sorted order of $P \setminus p$ by angle around p
- Weak radial ordering of p: radial ordering of p with points of $P \setminus CH$ being indistinguishable

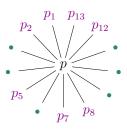




Weak Radial Orderings

- **Radial ordering of** p: sorted order of $P \setminus p$ by angle around p
- Weak radial ordering of p: radial ordering of p with points of $P \setminus CH$ being indistinguishable





Computation

- Radial orderings of all points in $O(n^2)$ (standard algorithm using dual line arrangement)
- ▶ Weak radial orderings of all points in CH in O(nh), h = |CH|

Monochromatic MinMin & MaxMax

Algorithm:

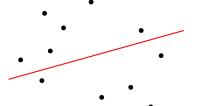
Find shortest/longest feasible edge in 2 steps

- Edges with at least one point in $P \setminus CH$ in $O(n \log n)$ (using a Voronoi diagram)
- Edges with both points in CH in O(nh) (using the weak radial orderings)

Total running time: $O(nh + n \log n)$

Monochromatic MinMin & MaxMax (alternative approach)

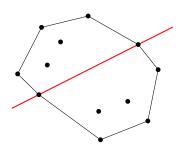
Halfplane range queries



How many points on each side of a line?

Monochromatic MinMin & MaxMax (alternative approach)

Halfplane range queries



How many points on each side of a line?

Applying [Matoušek 1993] yields algorithm with running time $O(n^{1+\epsilon} + n^{2/3}h^{4/3}\log^3 n)$.

[Opposed to the previous $O(nh + n \log n)$.]

Summary of results

Monochromatic	MinMin	MaxMax	MinMax	MaxMin
General Position		$+ n \log n$, $n^{2/3} h^{4/3} \log^3 n$	\mathcal{NP} -hard	?
Convex Position Points on circle		,	$O(n^2)$ $O(n)$	
Bichromatic	MinMin	MaxMax	MinMax	MaxMin
General Position Convex Position Points on circle	?	?	\mathcal{NP} -hard $O(n^2)$ $O(n)$?

Open problems:

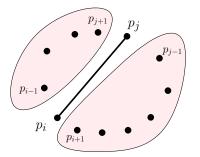
- ▶ Bichromatic: Edge feasibility criterion checked in polynomial time?
- ▶ Is MaxMin \mathcal{NP} -hard?

Classic dynamic programming approach works for all variants:

- ▶ $O(n^3)$ time and $O(n^2)$ space complexity.
- ▶ Used for MinMax [Biniaz et al. 2014, Carlsson et al. 2015]

Classic dynamic programming approach works for all variants:

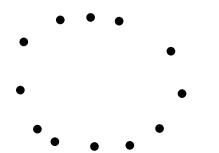
- ▶ $O(n^3)$ time and $O(n^2)$ space complexity.
- ▶ Used for MinMax [Biniaz et al. 2014, Carlsson et al. 2015]



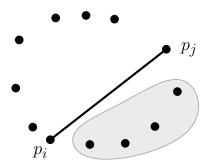
- ► A subproblem is defined by a sequence of consecutive points.
- ► For each (sub)problem we test all possible splits into two of its subproblems.

Monochromatic	MinMin	MaxMax	MinMax	MaxMin
General Position	`	$+ n \log n$, $n^{2/3} h^{4/3} \log^3 n$	\mathcal{NP} -hard	?
Convex Position Points on circle	$O(n^3)$	$O(n^3)$	$O(n^2)$	$O(n^3)$
Bichromatic	MinMin	MaxMax	MinMax	MaxMin
General Position Convex Position Points on circle	? O(n³)	? O(n³)	\mathcal{NP} -hard $\mathcal{O}(\mathit{n}^2)$	-

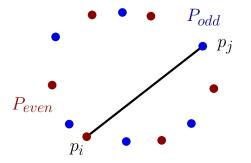
▶ We can do better for some cases.



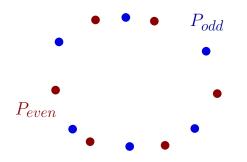
▶ Edge (p_i, p_j) is feasible iff j - i is odd.



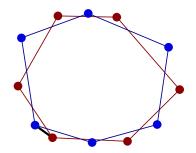
- ▶ Edge (p_i, p_i) is feasible iff j i is odd.
- \triangleright Partition P in P_{even} and P_{odd} .



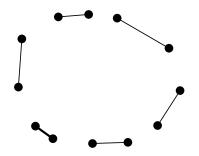
- ▶ Edge (p_i, p_i) is feasible iff j i is odd.
- \triangleright Partition P in P_{even} and P_{odd} .
- Goal: Find (p_i, p_j) with p_i ∈ P_{even}, p_j ∈ P_{odd} of
 minimum length.



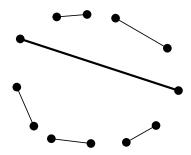
- ▶ Edge (p_i, p_j) is feasible iff j i is odd.
- ightharpoonup Partition P in P_{even} and P_{odd} .
- ▶ Goal: Find (p_i, p_j) with $p_i \in P_{even}, p_j \in P_{odd}$ of
 - ▶ minimum length. *O*(*n*) time [Toussaint 1984]

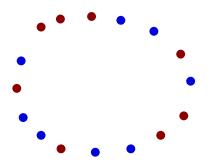


- ▶ Edge (p_i, p_i) is feasible iff j i is odd.
- \triangleright Partition P in P_{even} and P_{odd} .
- ▶ Goal: Find (p_i, p_j) with $p_i \in P_{even}, p_j \in P_{odd}$ of
 - ▶ minimum length. *O*(*n*) time [Toussaint 1984]
- Match remaining points using boundary edges.

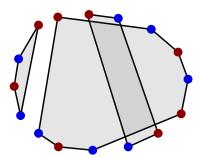


- ▶ Edge (p_i, p_j) is feasible iff j i is odd.
- \triangleright Partition P in P_{even} and P_{odd} .
- ▶ Goal: Find (p_i, p_j) with $p_i \in P_{even}, p_j \in P_{odd}$ of
 - ightharpoonup minimum length. O(n) time [Toussaint 1984]
 - ► maximum length. O(n) time [Edelsbrunner 1985]
- ► Match remaining points using boundary edges.

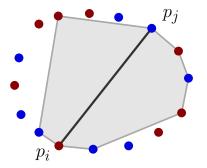




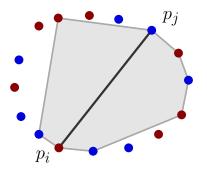
- ► Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ▶ Takes O(n) time.



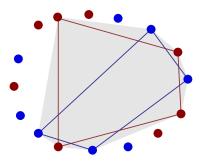
- ► Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ightharpoonup Takes O(n) time.
 - ▶ Edge (p_i, p_j) is feasible iff p_i and p_j are in the same orbit.



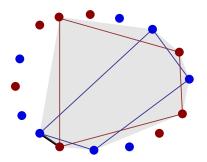
- ► Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ightharpoonup Takes O(n) time.
 - ▶ Edge (p_i, p_i) is feasible iff p_i and p_i are in the same orbit.
 - Colors inside an orbit alternate.



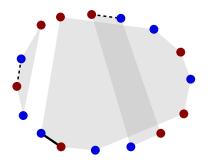
- ▶ Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ightharpoonup Takes O(n) time.
 - ▶ Edge (p_i, p_i) is feasible iff p_i and p_i are in the same orbit.
 - Colors inside an orbit alternate.
- Apply the monochromatic approach to each orbit.



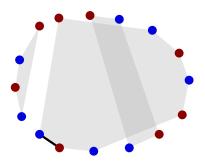
- ▶ Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ightharpoonup Takes O(n) time.
 - ▶ Edge (p_i, p_i) is feasible iff p_i and p_i are in the same orbit.
 - ► Colors inside an orbit alternate.
- Apply the monochromatic approach to each orbit.



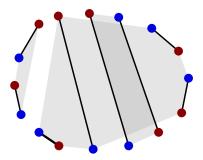
- ▶ Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ightharpoonup Takes O(n) time.
 - ▶ Edge (p_i, p_i) is feasible iff p_i and p_i are in the same orbit.
 - Colors inside an orbit alternate.
- Apply the monochromatic approach to each orbit.



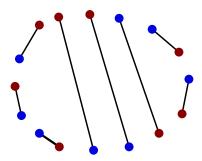
- ► Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ightharpoonup Takes O(n) time.
 - ▶ Edge (p_i, p_i) is feasible iff p_i and p_i are in the same orbit.
 - Colors inside an orbit alternate.
- Apply the monochromatic approach to each orbit.



- ▶ Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ightharpoonup Takes O(n) time.
 - ▶ Edge (p_i, p_i) is feasible iff p_i and p_i are in the same orbit.
 - Colors inside an orbit alternate.
- Apply the monochromatic approach to each orbit.



- ► Partition *P* into *orbits* [Savić & Stojaković 2018]
 - ightharpoonup Takes O(n) time.
 - ▶ Edge (p_i, p_i) is feasible iff p_i and p_i are in the same orbit.
 - Colors inside an orbit alternate.
- Apply the monochromatic approach to each orbit.
- \triangleright O(n) time total.



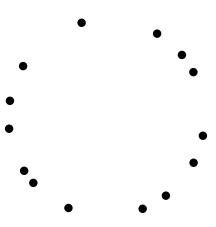
Summary of results

Monochromatic	MinMin	MaxMax	MinMax	MaxMin
General Position	•	$+ n \log n$,	$\mathcal{NP} ext{-hard}$?
	$O(n^{1+\epsilon} + n^{2/3}h^{4/3}\log^3 n)$			
Convex Position	O(n)	O(n)	$O(n^2)$	$O(n^3)$
Points on circle	O(n)	O(n)	O(n)	$O(n^3)$
Bichromatic	MinMin	MaxMax	MinMax	MaxMin
General Position	?	?	\mathcal{NP} -hard	?
Convex Position	O(n)	O(n)	$O(n^2)$	$O(n^3)$
Points on circle	O(n)	O(n)	O(n)	$O(n^3)$

Open problem:

▶ Design $o(n^3)$ time algorithms for MaxMin.

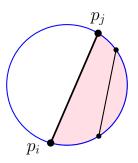
Points on a Circle



Points on Circle

Decreasing chords property

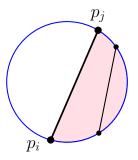
Given an edge (p_i, p_j) all points on (at least) one of its sides have pairiwise distances smaller than p_i and p_j .



Points on Circle

Decreasing chords property

Given an edge (p_i, p_j) all points on (at least) one of its sides have pairiwise distances smaller than p_i and p_j .

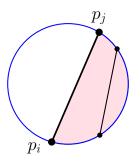


▶ The shortest edge of a perfect matching is a boundary edge.

Points on Circle

Decreasing chords property

Given an edge (p_i, p_j) all points on (at least) one of its sides have pairiwise distances smaller than p_i and p_j .



- ▶ The shortest edge of a perfect matching is a boundary edge.
- Also applies to convex point sets with the decreasing chords property.

Idea: Try forbidding all boundary edges shorter than μ , and check if there is still a matching.

Idea: Try forbidding all boundary edges shorter than μ , and check if there is still a matching.

Lemma

There exists a matching without the forbidden edges iff the length of the longest forbidden chain is less than n/2.

Problem: Find maximal μ such that there is a matching.

▶ Idea 1: Binary search - $O(n \log n)$ time

Problem: Find maximal μ such that there is a matching.

- ▶ Idea 1: Binary search $O(n \log n)$ time
- ► Idea 2:

$$\mu_{\max} = \min_{i \in \{0, \dots, n-1\}} \max_{j \in \{i, \dots, i + \frac{n}{2} - 1\}} |p_j p_{j+1}|$$

Problem: Find maximal μ such that there is a matching.

- ▶ Idea 1: Binary search $O(n \log n)$ time
- ► Idea 2:

$$\mu_{\max} = \min_{i \in \{0, \dots, n-1\}} \max_{j \in \{i, \dots, i + \frac{n}{2} - 1\}} |p_j p_{j+1}|$$

 Use RMQ data structure or sliding window minimum algorithm - O(n) time.

Problem: Find maximal μ such that there is a matching.

- ▶ Idea 1: Binary search $O(n \log n)$ time
- ► Idea 2:

$$\mu_{\max} = \min_{i \in \{0, \dots, n-1\}} \max_{j \in \{i, \dots, i + \frac{n}{2} - 1\}} |p_j p_{j+1}|$$

- ► Use RMQ data structure or sliding window minimum algorithm O(n) time.
- It is also possible to construct the optimal solution in O(n) time.

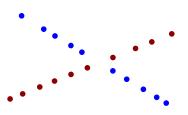
Summary of results

Monochromatic	MinMin	MaxMax	MinMax	MaxMin
General Position	•	$+ n \log n$,	$\mathcal{NP} ext{-hard}$?
	$O(n^{1+\epsilon} + n^{2/3}h^{4/3}\log^3 n)$			
Convex Position	O(n)	O(n)	$O(n^2)$	$O(n^3)$
Points on circle	O(n)	O(n)	O(n)	O(n)
Bichromatic	MinMin	MaxMax	MinMax	MaxMin
General Position	?	?	\mathcal{NP} -hard	?
Convex Position	O(n)	O(n)	$O(n^2)$	$O(n^3)$
Points on circle	O(n)	O(n)	O(n)	$O(n^3)$

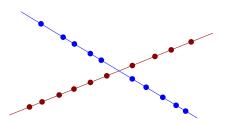
Open problem:

▶ Bichromatic MaxMin circle in $o(n^3)$ time? Possibly employing the theory of orbits?

Doubly collinear points



Doubly collinear points



Summary of results

Monochromatic	${\bf MinMin}$	MaxMax	MinMax	MaxMin
General Position	O(nh	$+ n \log n$,	$\mathcal{NP} ext{-hard}$?
	$O(n^{1+\epsilon} + n^{2/3}h^{4/3}\log^3 n)$			
Convex Position	O(n)	O(n)	$O(n^2)$	$O(n^3)$
Points on circle	O(n)	O(n)	O(n)	O(n)
Bichromatic	MinMin	MaxMax	MinMax	MaxMin
General Position	?	?	\mathcal{NP} -hard	?
Convex Position	O(n)	O(n)	$O(n^2)$	$O(n^3)$
Points on circle	O(n)	O(n)	O(n)	$O(n^3)$
Doubly collinear	O(n)	O(n)	$O(n^4 \log n)$?

Open problem:

▶ Is the MaxMin doubly collinear problem \mathcal{NP} -hard?

Summary of results

Monochromatic	MinMin	MaxMax	MinMax	MaxMin	
General Position	$O(nh + n \log n)$	O(nh)	$\mathcal{NP} ext{-hard}$?	
$O(n^{1+\epsilon} + n^{2/3}h^{4/3}\log^3 n)$					
Convex Position	O(n)	O(n)	$O(n^2)$	$O(n^3)$	
Points on circle	O(n)	O(n)	O(n)	O(n)	
Bichromatic	MinMin	MaxMax	MinMax	MaxMin	
General Position	?	?	$\mathcal{NP} ext{-hard}$?	
Convex Position	O(n)	O(n)	$O(n^2)$	$O(n^3)$	
Points on circle	O(n)	O(n)	O(n)	$O(n^3)$	
Doubly collinear	O(n)	<i>O</i> (1)	$O(n^4 \log n)$?	

Thank you for your attention!