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Abstract
Given a set of k points A ⊆ Rd together with a positive weight function w : A → R>0, the
Fermat distance function is ϕ(x) =

∑
a∈A w(a)‖x− a‖. A classic problem in facility location is

finding the Fermat point x∗, the point that minimizes the function ϕ. We present algorithms to
compute an ε-approximation of the Fermat point x∗, that is, a point x̃

∗ satisfying ‖x̃∗−x∗‖ < ε.
Our algorithms are based on the subdivision paradigm, which we combine with Newton methods,
used for speed-ups and certification. Our algorithms are certified in the sense of interval methods.

1 Introduction

A classic problem in Facility Location [14, 29] is the placement of a facility to serve a given
set of demand points or customers so that the total transportation costs are minimized. The
total cost at any point is interpreted as the sum of the distances to the demand points. The
point that minimizes this sum is called the Fermat Point, see Fig. 1.

A weighted foci set is a non-empty finite set of (demand) points A = {a1, . . . , ak} ⊆ Rd

associated with a positive weight function w : A→ R>0. Each a ∈ A is called a focus with
weight w(a). Let W =

∑
a∈A w(a). The Fermat distance function of A is given by

ϕ(x) :=
∑
a∈A

w(a)‖x− a‖,

where ‖x‖ is the Euclidean norm in Rd. The global minimum value of ϕ is called the Fermat
radius of A and denoted r∗; any point x ∈ Rd that achieves this minimum, ϕ(x) = r∗, is
called a Fermat point and denoted x∗ = x∗(A). If A is not collinear then x∗ is unique
[22, 24]. We also consider the closely related problem of computing k-ellipses of A: for any
r > r∗(A), the k-ellipsoid of A of radius r is the level set ϕ−1(r) :=

{
x ∈ Rd : ϕ(x) = r

}
.

When d = 2, they are called k-ellipses motivated by classical ellipses being 2-ellipses. Figure 1
shows some 28-ellipses with different radii computed by our algorithm.

The question of approximating the Fermat point is of great interest as its coordinates are
the solution of a polynomial with exponentially high degree [3, 28]. An ε-approximation x̃∗ to
the Fermat point x∗ can be interpreted in 3 senses: (A) ‖x̃∗ − x∗‖ ≤ ε, (B) ϕ(x̃∗) ≤ ϕ(x∗)+ε,
and (C) ϕ(x̃∗) ≤ (1 + ε)ϕ(x∗). In this paper, we consider approximations in the sense (A)
which are stronger than senses (B) and (C). To the best of our knowledge, only senses (B)
and (C) have been studied so far; they are actually approximations of the Fermat radius.

There is a plethora of results for the Fermat point including, among others, approximations
algorithms [2, 6, 9, 11, 15, 18, 30, 38] and special configurations and other variants [1, 5, 8,
10, 13, 14]. A smaller, but equally old, literature also exists for the k-ellipses [25, 28, 33, 35].
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(a) (b)

Figure 1 A set of 28 foci, corresponding to EU capitals, with the Fermat point (x) and three 28-
ellipses of different radius. (a) Unweighted. (b) The weight of a focus is the population of that country.

In this work we introduce certified algorithms for approximating the Fermat point,
combining a subdivision approach with interval methods, cf. [21, 31]. The approach can be
formalized in the framework of “soft predicates” [36]. Our certified algorithms are fairly easy
to implement, and are shown to have good performance experimentally.

Our Contributions can be summarized as follows: (1) We introduce a box subdivi-
sion scheme to compute an ε-approximation of the Fermat point. (2) We augment the
Weiszfeld point sequence [37] with a Newton-operator test, that outputs an ε-approximation
of the Fermat point. (3) We implement and experimentally evaluate our algorithms with
various datasets. In the full paper, we also address the problem of computing k-ellipses.

2 Preliminaries

Let Rd (or simply R when d = 1) denote the set of closed d-dimensional boxes (i.e.
Cartesian products of intervals) in Rd. Our subdivision algorithms start with an initial box
B0 ∈ Rd and recursively split it. We organize the boxes in a hyper-octree data structure [32].
A box is specified by an interval in each dimension B = I1 × ...× Id. We denote: mB the
center of B, rB the radius of B (distance between mB and a corner), ω(B) the width of B

(the maximum length of its defining intervals), and c · B the box with center mB and the
length of each Ii scaled by c. Operation split takes each interval of B and splits it in the
middle. It returns 2d children of B. Operation split2 applies split to all of B’s children
and returns the 22d grandchildren of B. We maintain the subdivision smooth, i.e., the depth
of any two boxes that have overlapping faces differs by a depth of at most 1. Maintaining
smoothness does not increase the asymptotic costs [4].

Let P be a logical predicate on boxes, i.e. P : Rd → {true, false}. A test T looks like
a predicate: T : Rd → {success, failure} and it is always associated to some predicate
P : Call T a test for predicate P if T (B) = success implies P (B) = true. However, we
conclude nothing if T (B) = failure.

I Definition 2.1. Let T be a test for a predicate P . We call T a soft predicate (or soft
version of P ) if it is convergent in this sense: if (Bn)n∈N is a monotone sequence of boxes
Bn+1 ⊆ Bn that converges to a point a, then P (a) = T (Bn) for n large enough.

P (B) denotes a soft version of P (B). We construct soft predicates using functions of the
form F : Rd → (R ∪ {−∞,∞}) approximating a scalar function f : D → R with D ⊂ Rd.
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Figure 2 The resulting box subdivision for (a) the Fermat point and (b) the k-ellipses of Fig. 1a.

I Definition 2.2. Call F a soft version of f if it is

(i) conservative, i.e. for all B ∈ Rd, F (B) contains f(B) := {f(p) : p ∈ B ∩D}, and
(ii) convergent, i.e. if for monotone sequence (Bn)n∈N that converges to a point a ∈ D,

limn→∞ ω(F (Bn)) = 0 holds.

We denote F by f when F is a soft version of f . There are many ways to achieve f .
E.g. if f has an arithmetic expression E, we can simply evaluate E using interval arithmetic.

3 Approximate Fermat points

We assume that the Fermat point is unique and unequal to a focus. These assumptions
are mild and easy to ensure. A focus a ∈ A is the Fermat point of A if and only if∥∥∇ϕA\a(a)

∥∥ ≤ w(a) [37]. So, a simple O(k2d) preprocessing time suffices to verify this
assumption. In both subdivision algorithms presented below the time can be reduced to
O(kd). The Fermat point problem reduces to computing the critical point of the gradient of
ϕ. We now present three approximation algorithms for the Fermat point x∗.

3.1 Using the Subdivision Paradigm
This paradigm requires an initial box B0. If B0 is not given, it is easy to find a box containing
x∗, as x∗ lies in the convex hull of A [20]. Function Initial-Box(A), in O(k) time, returns
an axis-aligned box with the corners of minimum and maximum x, y coordinates.

I Definition 3.1. Given a box B, the gradient exclusion predicate C∇(B) returns true if
and only if 0 /∈ ∇ϕ(B). If we replace ∇ϕ(B) by its interval form ∇ϕ(B) see Section 4, we
obtain the corresponding interval predicate “ C∇(B)”.

In our algorithms we keep on splitting boxes using different kinds of predicates while we
exclude boxes (red in Fig. 3) that are guaranteed not to contain x∗ and we keep boxes (green
in Fig. 3) that might contain x∗. We test whether we can already approximate x∗ well
enough by putting a bounding box around all (green) boxes, which we have not excluded yet.

I Definition 3.2. Given a set of boxes Q, one of which contains the Fermat point, the
stopping predicate Cε(Q) returns true, if and only if the minimum axis-aligned bounding box
containing all boxes in Q has a radius at most ε.

If Cε returns true, then we can stop. Since the radius of the minimum bounding box is
at most ε, the center of the box is an ε-approximation of the Fermat point.

EuroCG’20
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Figure 3 Illustrations of three different steps during the execution of Algorithm 1.

Algorithm 1: Subdivision for Fermat Point (SUB)
Input : Foci set A, ε > 0. Output: Point p.

1 B0 ← Initial-Box(A); Q← Queue(); Q.push(B0);
2 while not Cε(Q) do
3 B ← Q.pop();
4 if not C∇(B) then Q.push(split(B)) ;
5 return p← Center of the bounding box of Q;

3.2 Enhancing the Subdivision Paradigm
Using a Newton inclusion predicate, we know that our algorithm will eventually converge
quadratically. Other authors have also considered Newton-type algorithms, but usually
independently of other methods, thus lacking global convergence. We integrate subdivision
with the Newton operator (an idea based on Dekker [12]), thus ensuring global convergence.

We want to find the Fermat point, i.e. the root of f = ∇ϕ. The Newton-type predicates
are well-studied in the interval literature, and they have the form N : Rd → Rd. We use
the formula by Moore [23] and Nickel [26]: N(B) = mB − J−1

f (B) · f(mB), where Jf is the
Jacobian matrix of f . Since f = ∇ϕ, the matrix Jf is actually the Hessian of ϕ. There are
better Newton type operators [19, 17, 16] in the sense that they return a smaller box, but
they are computationally more expensive.

This Newton box operator has the following properties, stemming from [7, 27, 34]: (1) If
N(B)⊂B then x∗∈ N(B). (2) If x∗∈ B then x∗∈ N(B). (3) If N(B)∩B = ∅ then x∗ /∈ B.

I Definition 3.3. Given a box B, the Newton inclusion predicate CN (B) returns true if
and only if N(2B) ⊂ 2B, where N(B) = mB − J−1

f (B) · f(mB) see Section 4.

I Theorem 3.4. Algorithms 1 and 2 return an ε-approximation of the Fermat point x∗.

Algorithm 2 initially excludes boxes only based on C∇ and splits the other boxes. This
subdivision phase takes exponential time in d. Once the test CN (B) succeeds, it will also
do so for one of B’s grandchildren. The Newton phase needs O(kd2) time per step and
converges quadratically in ε. The time necessary to transition from the subdivision phase to
the Newton phase does not depend on ε.

We can reduce the O(k2d) preprocessing time (testing if x∗ ∈ A) to O(kd) in both
subdivision algorithms, by doing this test only when all except a constant number of foci got
excluded by C∇. Another speedup comes by preprocessing with a principal component
analysis and then using rectangular boxes. Experimentally, we observe that it drastically
improves the runtime for near-degenerate inputs.



K. Junginger, I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 72:5

Algorithm 2: Enhanced subdivision for Fermat Point (E-SUB)
Input : Foci set A, ε > 0. Output: Point p.

1 B0 ← Initial-Box(A); Q← Queue(); Q.push(B0);
2 while Cε(Q) do
3 B ← Q.pop();
4 if not C∇(B) then
5 if CN (B) then
6 Q← Queue(); Q.push(split2(N(2B));
7 else Q.push(split(B));
8 return p← Center of the bounding box of Q;

3.3 Using a Point Sequence Scheme
Weiszfeld [37] gave an iterative method to compute a sequence of points converging to the
Fermat point, later corrected in [20, 29]. This scheme is defined by the following map:

T (x) =


T̃ (x) if x /∈ A∑

a∈A,a6=x w(a) a
‖x−a‖∑

a∈A,a6=x w(a) 1
‖x−a‖

if x ∈ A
where T̃ (x) =

∑k
i=1 w(a) ai

‖x−ai‖∑k
i=1 w(a) 1

‖x−ai‖

(1)

We augment this by adding a guarantee for the computation, turning it into an ε-
approximation algorithm. To verify the quality of a point pi, we use the Newton inclusion
predicate. We define a small box B with pi as center and map it to the new box N(B). If

N(B) ⊆ B, we know that x∗ lies in N(B). If N(B) 6⊆ B, we move on to point pi+1
and adjust the box size. If there was a focus in box B

10 , then N( B
10 ) covers the whole plane,

which hinders N(B) ⊆ B to succeed. In that case we shrink the box by a factor of 10. If
B
10 ∩ N( B

10 ) = ∅, then the box B
10 does not contain the x∗ and we therefore increase the

box size. As a starting point, we take the center of mass p0 of A, i.e., p0 = 1
W

∑
a∈A w(a)a,

as ϕ(p0) itself, is a 2-approximation of the Fermat radius [11].

Algorithm 3: Point sequence algorithm (P-SEQ)
Input : Foci set A, ε > 0. Output: Point p.

1 p← p0; w ← ε;
2 while True do
3 B ← Box B(mB = p, ω(B) = w); N(B)← Interval-Newton(B);
4 if N(B) ⊆ B then return p ;
5 else if N

(
B
10
)
∩ B

10 = ∅ then w ← min{ε, w · 10};
6 else w ← w

10 ;
7 p← T (p)

The point sequence in Eq. (1) converges to the Fermat point and when sufficiently close,
N(B) ⊂ B holds, hence Algorithm 3 returns an ε-approximation of the Fermat point.

4 Details on the box approximations ϕ, ∇ϕ, ∇2ϕ and N

We call L(B) a Lipschitz constant for box B if ∀p, q ∈ B : |ϕ(p)− ϕ(q)| ≤ L(B) · ‖p− q‖.
We will later choose L(B) smaller than the trivial Lipschitz constant W =

∑
a∈A w(a).

EuroCG’20
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I Lemma 4.1. ϕ(B) = [ϕ(mB)− L(B) · rB , ϕ(mB) + L(B) · rB ] is a soft version of ϕ.

Proof. The L(B) is a Lipschitz constant of ϕ on box B, i.e. for all p ∈ B it holds
|ϕ(p)− ϕ(mB)| ≤ L(B) · rB , which implies ϕ(p) ∈ [ϕ(mB)− L · rB , ϕ(mB) + L · rB ].

Let Bn be a sequence of boxes, which converges to a point. Hence rBn
→ 0. The Lipschitz

constants L(Bn) can be bounded from above by W . Thus, ω( ϕ(Bn)) ≤ 2W · rBn → 0. J

The following formulas are written for d = 2 but clearly generalize to higher dimensions.
For any point p = (px, py)T , let sin(p) := py/‖p‖ and cos(p) := px/‖p‖. Clearly,

∇ϕ(p) =
(∑

a∈A w(a) cos(p− a)∑
a∈A w(a) sin(p− a)

)
. (2)

Let Cor(B) denote the set of four corners of B. Then

sin(B − a) =


[−1, 1] if a ∈ B,

[min(sin(Cor(B)− a)), 1] if ax ∈ Bx ∧ ay < By,

[−1, max(sin(Cor(B)− a))] if ax ∈ Bx ∧ ay > By,

[min(sin(Cor(B)− a)), max(sin(Cor(B)− a))] else.
(3)

In other words, sin(B − a) can be computed from the sinus of at most four angles. Similarly
for cos(B − a).

For any p ∈ R2 \A it holds:

∇2ϕ(p) =

 ∑
a∈A w(a) (py−ay)2

‖p−a‖3 −
∑

a∈A w(a) (px−ax)(py−ay)
‖p−a‖3

−
∑

a∈A w(a) (px−ax)(py−ay)
‖p−a‖3

∑
a∈A w(a) (px−ax)2

‖p−a‖3

 (4)

I Lemma 4.2. Soft versions ∇ϕ(B) and ∇2ϕ(B) are derived by replacing every occur-
rence of p in Eqs. (2) and (4) by B and evaluating with Eq. (3) and interval arithmetic.

A box approximation of the length of the gradient of ϕ can then be achieved by:

‖∇ϕ(B)‖ =
∥∥∥∥∑a∈A\B w(a)

(
cos(B − a)
sin(B − a)

)∥∥∥∥+
[
−
∑

a∈A∩B w(a),
∑

a∈A∩B w(a)
]

where the length of an interval vector I = (Ix, Iy) is computed by ‖I‖ =
√

I2
x + I2

y and the

square root of an interval J by
√

J =
[√

min |J |,
√

max |J |
]
. We use the Lipschitz constant

L(B) = min{W, max ‖∇ϕ(B)‖} of box B to compute ϕ(B).

I Lemma 4.3. The soft gradient test C∇(B) is convergent, i.e., for any monotone sequence
of boxes (Bn)n∈N that converges to a point p, the point p is not the Fermat point iff

C∇(Bn) = success for n large enough.

We compute N(B) = mB − ( ∇2ϕ(B))−1 · ∇ϕ(mB) and the inverse of an interval

matrix through interval arithmetic:
(

I J

K L

)−1

= 1
IL−JK

(
L −J

−K I

)
.
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Figure 4 Experimental results. Points are, in Unif-1, uniformly sampled from a disk and, in
Unif-2, uniformly sampled from two disjoint disks. Finding the Fermat point with times as function
of (a) k, with ε = 10−4 and (b) ε, with k = 100. Axes are in logarithmic scale.

5 Experiments and Conclusion

We have implemented our algorithms in two dimensions using Matlab. We have experimented
with various datasets. An overview of experiments on synthetic datasets is shown in Fig. 4.

The runtime of all algorithms depends linearly on the number of foci. When ε is sufficiently
small, then the enhanced subdivision algorithm outperforms the point sequence algorithm
due to its quadratic convergence near the Fermat point.
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