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Abstract
Given a set of points in the plane, we are interested in matching them with straight line segments.
We focus on perfect (all points are matched) non-crossing (no two edges intersect) matchings.
Apart from the well known MinMax variation, where the length of the longest edge is minimized,
we extend work by looking into three new optimization variants such as MaxMin, MinMin, and
MaxMax. We consider both the monochromatic and bichromatic versions of these problems
and provide efficient algorithms for various input point configurations.

1 Introduction

In the matching problem, we are given a set of objects and the goal is to partition the set
into pairs such that no object belongs to two pairs. This simple problem is a classic in graph
theory, which has received a lot of attention, both in an abstract and in a geometric setting.

In this paper, we consider the geometric setting where given a set P of 2n points in
the plane, the goal is to match points of P with straight line segments, in the sense that
each pair of points induces an edge of the matching. A matching is perfect if it consists
of exactly n pairs. A matching is non-crossing if the edges of the matching are pairwise
disjoint. When there are no restrictions on which points can be matched, the problem is
called monochromatic. In the bichromatic variant, P is partitioned into two sets B and R
of blue and red points, respectively, and only points of different colors are allowed to be
matched. When |B| = |R| = n, the point set P is called balanced.

Related work on perfect non-crossing matchings. Geometric matchings find applications
in various areas, as in operations research, in the field of shape matching, in pattern
recognition, in VLSI design problems and map construction or comparison algorithms among
others. In any application, requiring the matching to be non-crossing or perfect, seems
natural. Given a point set, monochromatic or balanced bichromatic, a perfect non-crossing
matching always exists and it can be found in O(n logn) time by recursively computing
ham-sandwich cuts [13] or by using the algorithm of Hershberger and Suri [12].
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Figure 1 Optimal MinMin1, MaxMax1, MinMax1, and MaxMin1 matching of a point set.

A well-studied optimization criterion is minimizing the sum of lengths of all edges, referred
to as MinSum, and also known as the Euclidean assignment or matching problem. It is
interesting, and easy to see, that such a matching is always non-crossing. For monochromatic
point sets, an O(n3/2 logn)-time algorithm was given by Varadarajan [19]. For bichromatic
point sets, Agarwal et al. [2] presented an O(n2+ε)-time algorithm. When points are in convex
position, Marcotte and Suri [14] solved the problem in O(n logn) time in both settings.

Another popular goal is to minimize the length of the longest edge, which we refer to as
the MinMax variant and is also known as the bottleneck matching. For monochromatic point
sets, Abu-Affash et al. [1] showed that finding such a matching is NP-hard and accompanied
this with an O(n3)-time algorithm for points in convex position. This was recently improved
to O(n2) time by Savić and Stojaković [15]. For bichromatic point sets, Carlsson et al. [7]
showed that finding such a matching is also NP-hard. Biniaz et al. [6] gave an O(n3)-time
algorithm for points in convex position and an O(n logn)-algorithm for points on a circle.
These were recently improved to O(n2) and O(n), respectively, by Savić and Stojaković [16].

More optimization goals have been studied, as the uniform or fair matching, where the
goal is to minimize the length difference between the longest and the shortest edge, and the
minimum deviation matching, where the difference between the shortest edge length and
the average edge length should be minimized. Both can be solved in polynomial time, see
Efrat et al. [10, 11]. Another example is the MaxSum variant, where the goal is to maximize
the sum of the edge lengths. Alon et al. [4] conjectured that the problem is NP-hard.

Problem variants considered and our contribution. We continue exploring similar opti-
mization variants in different settings. We consider solely perfect non-crossing matchings,
without further mention. We deal with four variants: MinMin where the length of the
shortest edge is minimized, MaxMax where the length of the longest edge is maximized,
MaxMin where the length of the shortest edge is maximized, and MinMax, see Fig. 1.

To the best of our knowledge, out of the four variants, only MinMax, has been considered
before. Apart from the theoretical interest, MinMin and MaxMax are motivated by worst-
case analyses of matchings, where there is no control over the choice of edges, and short or
long edges are undesirable. Apart from the applications of MinMax, together with MaxMin,
such matchings resemble fair matchings in the sense that all edges have similar lengths.

We investigate both the monochromatic and bichromatic versions of these variants. In the
bichromatic version, we assume that P is balanced. We denote the monochromatic problems
with the index 1, e.g., MinMin1, and the bichromatic with the index 2, e.g., MinMin2.

These problems are examined in different point configurations. In Section 2, we consider
points in general position. In Section 3, points are in convex position. In Section 4, points lie
on a circle. In Section 5, we consider doubly collinear bichromatic point sets, where the blue
points lie on one line and the red points on another line. By studying structural properties
of each variant and combining diverse techniques, we come up with a series of interesting
results that are summarized in Table 1.
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Table 1 The running times for finding the values of optimal matchings regarding different
objective functions. The times marked with (*) indicate the extra time needed to return also the
matching. h denotes the size of the convex hull. Results without reference are given in this paper.

Monochromatic MinMin1 MaxMax1 MinMax1 MaxMin1

General Position O(nh+ n logn) O(nh) +O(n logn)∗ NP-hard [1] ?
Convex Position O(n) O(n) O(n2) [15] O(n3)
Points on circle O(n) O(n) O(n) O(n)
Bichromatic MinMin2 MaxMax2 MinMax2 MaxMin2

General Position ? ? NP-hard [7] ?
Convex Position O(n) O(n) O(n2) [16] O(n3)
Points on circle O(n) O(n) O(n) [16] O(n3)
Doubly collinear O(n) O(1) +O(n)∗ O(n4 logn) ?

2 Monochromatic points in general position

In this section, P is a set of points in general position, where we assume that no three points
are collinear. We denote by CH(P ) ⊆ P the set of points on the boundary of the convex hull
of P and set h := |CH(P )|. By d(v, w) we denote the Euclidean distance of two points v, w.

An edge (v, w) of points is feasible if there exists a matching which contains (v, w).

I Lemma 2.1. An edge (v, w) is infeasible if and only if v, w ∈ CH(P ) and there is an odd
number of points on each side of the line through (v, w). See Fig. 2a.

This criterion can be checked efficiently using the radial orderings of the points p ∈ P ,
i.e., the circular orderings of the points in P \ p by angle around p. The radial orderings of
all points in P can be computed in O(n2) time, see, e.g., [3, 5]. Instead, we define the weak
radial orderings. Given a set A ⊆ P , in the A-weak radial ordering of p the points from A

occurring between two points from A := P \A are given as an unordered set, see Fig. 2b-c.

I Lemma 2.2. The A-weak radial orderings of all points in A can be computed in O(n|A|) time.

MinMin1. We are looking for the shortest feasible edge. We first compute CH(P ) in
O(n log h) time [8] and the CH(P )-weak radial orderings of points in CH(P ) in O(nh) time.
Then, we find m1 := min({ d(v, w) : v ∈ P \ CH(P ), w ∈ P }) in O(n logn) time using a
Voronoi diagram and m2 := min({ d(v, w) : v, w ∈ CH(P ) }) in O(nh) time using weak radial
orderings. The solution is then msol = min(m1,m2), resulting in the following theorem.

I Theorem 2.3. MinMin1 can be solved in O(nh+ n logn) time.
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Figure 2 (a) An infeasible edge (v, w). (b-c) The CH(P )-weak radial ordering of a point p.
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MaxMax1. We can use the same O(nh+n logn)-time algorithm, considering maximizations
inm1,m2, andmsol instead of minimizations. Using Lemma 2.4 we can reduce the time needed
to find m1 in O(nh), by simply comparing all (n− h)h edges. This results in Theorem 2.5.

I Lemma 2.4. If (v, w) is a longest feasible edge, then one of v, w ∈ CH(P ).

I Theorem 2.5. MaxMax1 can be solved in O(nh) time.

3 Points in convex position

In this section, we assume that points in P are in convex position with the counterclockwise
ordering, p0, . . . , p2n−1, given. We address a point pi by its index i, and do arithmetic
operations modulo 2n. We call edges of the form (i, i+ 1) boundary edges.

Dynamic programming. We can easily solve all four optimization variants in O(n3) time
using a classic dynamic programming approach, which is also used for MinMax [1, 6, 7].

I Theorem 3.1. If P is convex, MaxMin1 and MaxMin2 can be solved in O(n3) time.

3.1 MinMin and MaxMax matchings in convex position
Monochromatic. We split P into two (convex) sets, Podd and Peven, according to the parity
of the indices. A pair (i, j) is feasible if and only if i and j are of different parity [1]. Hence,
any (i, j) with i ∈ Podd and j ∈ Peven is feasible. Given two convex sets P,Q, we can find in
O(|P |+ |Q|) time the points that realize the minimum [18] and the maximum [9] distance
between them. Applying these algorithms to Podd and Peven, we obtain the following.

I Theorem 3.2. If P is convex, MinMin1 and MaxMax1 can be solved in O(n) time.

Bichromatic. We now combine the monochromatic algorithms with the theory of orbits [16],
a concept which captures well the nature of bichromatic matchings in convex position. More
specifically, P can be partitioned in O(n) time into orbits, which are balanced sets of points.
In each orbit point colors alternate and a bichromatic edge (b, r) is feasible if and only if b
and r are in the same orbit. Thus, to each orbit separately we can use the algorithms of
[9, 18] and return the overall longest or shortest edge, see Fig. 3, resulting in the following.

I Theorem 3.3. If P is convex, MinMin2 and MaxMax2 can be solved in O(n) time.

Given an extremal feasible edge, we can extend it to an optimal matching, in O(n) time,
by applying the following lemma to the sets {i+ 1, . . . , j − 1} and {j + 1, . . . , i− 1}.

I Lemma 3.4. If P is in convex position, we can construct an arbitrary matching in O(n)
time, both in the monochromatic and bichromatic case.

(a) (b) (c)

Figure 3 MinMin2 for a set in convex position. (a) Find orbits. (b) Find the shortest edge
between the blue and red polygon of an orbit. (c) Extend to a perfect matching using Lemma 3.4.
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4 Points on a circle

Next, we assume that all points of P lie on a circle. Obviously, the results from Section 3 also
apply here. Apart from convexity, these results rely only on a property of point sets lying on
a circle, which we call the decreasing chords property. A point set P has this property if, for
any edge (i, j), for at least one of its sides, all the possible edges between two points on that
side are not longer than (i, j) itself, see Fig. 4a. Using this, we can easily infer the following.

I Lemma 4.1. Any shortest edge of a matching on P is a boundary edge.

MinMin1 and MinMin2. Due to Lemma 4.1, these can be solved in O(n) time significantly
simpler, without using Theorems 3.2 and 3.3, by finding the shortest feasible boundary edge.

MinMax1. We show that there exists a MinMax1 matching using only boundary edges.
There are two such matchings and we find the optimal in O(n) time, resulting in the following.

I Theorem 4.2. If P lies on a circle, MinMax1 can be solved in O(n) time.

MaxMin1. Lemma 4.1 suggests an approach for MaxMin1 by forbidding short boundary
edges and checking if we can find a matching without them. Let some boundary edges
be forbidden and the remaining be allowed. A forbidden chain is a maximal sequence of
consecutive forbidden edges. See Fig. 4b for an example (with forbidden edges shown dashed).

I Lemma 4.3. There exists a matching without the forbidden edges if and only if l < n,
where l is the length of a longest forbidden chain.

MaxMin1 is equivalent to finding the largest value µ such that there exists a matching
with all edges of length at least µ. By Lemma 4.1, it suffices to search for µ among the
lengths of the boundary edges. By Lemma 4.3, this means that we need to find the maximal
length µ of a boundary edge such that there are no n consecutive boundary edges all shorter
than µ. We can find µ as follows. Consider all 2n sets of n consecutive boundary edges and
associate to each set the longest edge in it. Then, out of the 2n longest edges, we search for
the shortest one. This fits under the sliding window maximum problem, for which several
simple algorithms are known, see, e.g., [17]. Adapting to our problem we obtain the following.

I Theorem 4.4. If P lies on a circle, MaxMin1 can be solved in O(n) time.

Using Lemma 4.5, we can construct an optimal matching within the same time complexity.

I Lemma 4.5. Given a value µ > 0, a matching consisting of edges of length at least µ can
be constructed in O(n) time if it exists.

i

j

(a)
i

j

i− 1
j + 1

(b)

Figure 4 (a) The decreasing chords property. (b) Example of a forbidden chain {i, . . . , j}.
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Figure 5 A doubly collinear point set, with (a) a feasible and (b) an infeasible edge shown.

5 Doubly collinear points

A bichromatic point set P is doubly collinear if the blue points lie on a line lB and the red
points lie on a line lR. We assume that lB and lR are not parallel and that the ordering of
the points along each line is given. Let x = lB ∩ lR and assume, for simplicity, that x /∈ P .

5.1 MinMin2 and MaxMax2 matchings on doubly collinear points
We first give a feasibility criterion for an edge, see Fig. 5, which can be checked in O(1) time.
It also indicates an O(n)-time algorithm, to construct a matching, given a feasible edge (r, b).

I Lemma 5.1. Let r1, . . . , ri, . . . , ri∗ , x, ri∗+1, . . . , rn and b1, . . . , bj , . . . , bj∗ , x, bj∗+1, . . . , bn
be the points on lR and lB, respectively, in sorted order. Then, the edge (ri, bj) is feasible if
and only if i∗ − i ≤ n− j and j∗ − j ≤ n− i.

As a consequence of Lemma 5.1, the order of the closest feasible neighbors of the red
points on the line lB coincides with the order of the red points on lR. Thus, we can find the
closest feasible neighbor of all red points in total O(n) time, implying the following theorem.

I Theorem 5.2. If P is doubly collinear, MinMin2 can be solved in O(n) time.

The same algorithm solves MaxMax2. We show that the longest feasible edge is an edge
between the, at most four, points on CH(P ), so we can further improve as follows.

I Theorem 5.3. If P is doubly collinear, MaxMax2 can be solved in O(1) time.

5.2 MinMax2 and MaxMin2 matchings on doubly collinear points
One-sided case. We first consider the case, where all red points are on one side of lB . This
can be solved via a dynamic program with O(n2) subproblems in total, see Fig. 6.

I Theorem 5.4. If P is one-sided doubly collinear, MaxMin2 can be solved in O(n2) time.

v v v

Figure 6 The one-sided case with the two possibilities to match v and the resulting subproblems.
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(a) (b) (c)

Figure 7 Optimal matchings having a special structure (a) for MinMax2, (b) for MinMax2 and
MaxMin2 if α = π

2 , and (c) for MinMax2 if α < π
4 .

In the case of MinMax2 we can further improve upon this, by proving (also for the
two-sided case) the existence of an optimal matching with a special form where the points
are partitioned into a constant number of blocks and these blocks are matched, see Fig. 7a.

I Theorem 5.5. If P is one-sided doubly collinear, MinMax2 can be solved in O(n logn) time.

General case. For MinMax2, the aforementioned form can also be applied to the general
case, yielding Theorem 5.6. On the contrary, for MaxMin2 we are not aware if an optimal
matching with a special form exists. Thus, we do not know a polynomial time algorithm.

I Theorem 5.6. If P is doubly collinear, MinMax2 can be solved in O(n4 logn) time.

Special intersection angle. Let α be the angle of intersection of lB and lR. By proving the
existence of optimal matchings of a special form, see Fig. 7b-c, we can obtain the following.

I Theorem 5.7. If α = π
2 , MinMax2 and MaxMin2 can be solved in O(n) time.

I Theorem 5.8. If α ≤ π
4 , MinMax2 can be solved in O(n) time.

6 Concluding remarks

It comes as no surprise that the MaxMin variant exhibits this significant difficulty; devising
efficient algorithms even for simple configurations is not at all obvious and, hence, interesting
on its own. On the contrary, the MinMin and the MaxMax variants are relatively easier to
tackle; we managed to design optimal algorithms by exploiting structural properties combined
with existing techniques from diverse problems. We conclude with some open questions,
hoping to see Table 1 filled in. For bichromatic P in general position, can we check the
feasibility of an edge in polynomial time? This would imply polynomial time algorithms for
MinMin2 and MaxMax2. For P in convex position, do there exist o(n3)-time algorithms
for MaxMin? Maybe by using the theory of orbits for the bichromatic case? For P in
general position, can MaxMin be solved in polynomial time? What if P is doubly collinear?
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