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Abstract
We introduce the Rotating Rays Voronoi diagram, a Voronoi structure where the input sites are rays
and the distance function is the counterclockwise angular distance. This novel diagram can be used
to solve illumination or coverage problems where a domain has to be covered by floodlights/wedges of
uniform angle. We present structural properties, combinatorial complexity bounds, and algorithms
to construct the diagram. Moreover, we show how we can use this Voronoi diagram to compute the
Brocard angle of a convex polygon in optimal linear time.

1 Introduction

In this work, we study a Voronoi diagram where the input is a set of n rays in the plane,
and the distance from a point x to a ray r is the angular distance, i.e., the minimum angle α
such that, after counterclockwise rotating r around its apex by α, r illuminates x; see Fig. 1.

x

rα

p(r)

(a) (b)

Figure 1 (a) The angular distance α from a point x to a ray r. (b) The Voronoi diagram of four
rays in the plane. All points in a region are first illuminated by the ray with the respective color.
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Figure 2 (a) Illumination with edge-aligned α-floodlights. (b) The Rotating Rays Voronoi
diagram. Highlighted are the point and the three rays that realize the Brocard angle α∗.

Motivation. The distance measure is motivated by the following illumination problem: An
α-floodlight is a light source that illuminates a cone with aperture α from its apex. Given a
simple polygon P , an α-floodlight is placed on each vertex v ∈ P facing the interior of P in
such a way, that one of its rays contains the successor of v in the counterclockwise order of
the vertices of P ; see Fig. 2a. The Brocard Illumination problem [1] asks for the Brocard
angle, the smallest value of α for which a set of α-floodlights covers the interior of P .

Constructing the Voronoi diagram of rays inside a convex polygon reveals the Brocard
angle, as the latter is realized at a vertex of the diagram with maximum distance; see Fig. 2b.
Interestingly, given a set of rays, similar illumination problems can be defined in different
domains. The domain may be the entire plane or even a curve and, analogously, constructing
the Voronoi diagram in that domain yields the Brocard angle. Hence, there is an interest in
studying such diagrams, and designing construction algorithms for different domains.

Our contribution. We introduce the Rotating Rays Voronoi Diagram and prove a series of
results, paving the way for future work on similar problems. We consider the diagram in the
plane and identify structural properties which we complement with combinatorial complexity
results, a worst case Ω(n2) lower bound and an O(n2+ε) upper bound, together with an
O(n2+ε)-time construction algorithm. Finally, motivated by applications to illumination
problems, we restrict our domain to a convex polygonal region bounded by the input set of
sites, and construct the Voronoi diagram in such a domain in optimal Θ(n) time.

Related work. In the Brocard illumination problem, a polygon is called a Brocard polygon [2]
if all the α-floodlights simultaneously illuminate a point inside the polygon when α is equal
to the Brocard angle. The characterization of Brocard polygons has a long history, yet,
only harmonic polygons (which include triangles and regular polygons) are known to be
Brocard [5]. Deciding whether a polygon is Brocard can be done in O(n) time and then
the Brocard angle can be computed in O(1) time. Computing the Brocard angle of simple
polygons was first studied by Alegría et al. [1]. The authors solved the problem in O(n3 log2 n)
time, and complemented this result with an O(n logn)-time algorithm for convex polygons.

Since their introduction [4], floodlight illumination problems have been widely studied, see
e.g. [15, 20]. The case when the floodlights are of uniform angle is of particular interest, and
has been explored by several authors, see e.g. [6, 9, 10, 16, 19]. Rotating α-floodlights are
also used to model devices with limited sensing range, like surveillance cameras or directional
antennae [7, 13, 14]. The Rotating Rays Voronoi diagram seems to be novel with respect to
both the input sites and the distance function. A related diagram was defined [8] to study
dominance regions of players in the analysis of football (soccer) matches [18].
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2 Preliminaries

In this section we formally define the Rotating Rays Voronoi diagram. Let S be a set of n
rays in the plane. Given a ray r, we denote its apex by p(r) and its supporting line by l(r).

I Definition 2.1. Given a ray r and a point x ∈ R2, the angular distance from x to r,
denoted d∠(x, r), is the minimum counterclockwise angle α from r to a ray with apex on
p(r) passing through x; see Fig. 1a.

I Definition 2.2. Given two rays r and s, the dominance region dr(r, s) is the set of points
with smaller angular distance to r than to s, i.e., dr(r, s) = {x ∈ R2 | d∠(x, r) < d∠(x, s)}.
The angular bisector of r and s, denoted b∠(r, s), is the curve delimiting dr(r, s) and dr(s, r).

The different types of bisectors are illustrated in Fig. 3. Given two rays r and s, let
I = l(r) ∩ l(s). The bisector b∠(r, s) is the union of r, s, and a circular arc a that connects
p(r) to p(s). The arc a belongs to the bisecting circle Cb(r, s), which we define as follows:

If I, p(r), and p(s) are pairwise different, then Cb(r, s) is the circle through I, p(r), and
p(s). The arc a contains I if, and only if, I lies either on none or on both of r and s.
If I = p(r) and I 6= p(s), then Cb(r, s) is the circle tangent to l(r) passing through p(r)
and p(s). Both a and r lie on the same side of l(s) if, and only if, p(r) lies on s. We
analogously define Cb(r, s) if I = p(s) and I 6= p(r).
If p(r) = p(s), then both Cb(r, s) and a degenerate to a single point.
If l(r) and l(s) are parallel, then Cb(r, s) degenerates to the line through p(r) and p(s),
and a degenerates either to a line segment or to two halflines.
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Figure 3 The bisector of two rays r and s which are: (a) non-intersecting, (b) intersecting, (c)
with p(r) lying on s, (d) sharing their apex, (e) parallel, and (f) anti-parallel.

I Definition 2.3. The Rotating Rays Voronoi diagram of a set S of rays is the subdivision
of R2 into nearest Voronoi regions defined as follows:

vreg(r) := {x ∈ R2 | ∀s ∈ S \ {r} : d∠(x, r) < d∠(x, s) }.

The graph structure of the diagram of S is denoted by RVD(S) :=
(
R2 \

⋃
r∈S vreg(r)

)
∪S.
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An example diagram is shown in Fig. 1b. A region vreg(r) can be equivalently defined as
the intersection of all the dominance regions of r, i.e., vreg(r) =

⋂
s∈S\{r} dr(r, s). Note that

a region can have more than one connected component, which we call a face of the region.

3 RVD: properties, complexity, and an algorithm

In this section we study the diagram in the plane. Assuming that no two rays of S are
parallel to each other, the following two structural properties hold.

I Lemma 3.1. RVD(S) has exactly n unbounded faces, one for each ray.

Proof sketch. Let Γ be a circle containing all the bisecting circles of S. The intersection of
Γ and the unbounded part of each dominance region of r ∈ S is a circular arc with endpoint
r ∩ Γ. The intersection of all such arcs is connected. Hence vreg(r) ∩ Γ is connected. J

I Lemma 3.2. RVD(S) is connected.

Proof sketch. If RVD(S) is not connected, then there is a region vreg(r) that either has an
unbounded face with two occurrences at infinity or it encloses a component of RVD(S), creat-
ing an “island”. The first case is excluded by Lemma 3. The second case implies that such an
island also exists in some dominance region of the site r, which leads to a contradiction. J

We now show two lower bound constructions for the worst case complexity of the RVD.

I Theorem 3.3. RVD(S) has Ω(n2) combinatorial complexity in the worst case. This holds
even if the rays are pairwise non-intersecting.

Proof sketch. The bound is achieved by creating a grid structure in which the rays have
Θ(n2) intersections, each inducing a vertex in RVD(S); see Figure 4a. A Θ(n2) construction
can also be achieved by a set of rays that are pairwise disjoint. An example is shown in
Figure 4b, where the Voronoi regions of the n/2−1 leftmost rays have n/2+1 faces each. J

I Lemma 3.4. A Voronoi region of RVD(S) has Θ(n2) complexity in the worst case.

Proof sketch. Any vertex incident to a region vreg(r), is defined by r and a pair of rays.
Further, the diagram of three rays has O(1) complexity, so the O(n2) bound follows. For the
lower bound, we create a grid structure as in Theorem 3.3. We then add a ray r so that vreg(r)
has a face inside each cell of the grid, thus vreg(r) has Θ(n2) complexity; see Fig. 5. J

(a) (b)

Figure 4 RVD(S) with Θ(n2) complexity, where the rays in S are (a) intersecting and (b) pairwise
non-intersecting.
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(a) (b)

Figure 5 RVD(S) with a region having Θ(n2) complexity (a) zoomed out and (b) zoomed in.

Finally, we apply the general upper bound by Sharir [17] to yield a near quadratic upper
bound on the complexity of the RVD. This is accompanied by a construction algorithm.

I Theorem 3.5. For any ε > 0, RVD(S) has O(n2+ε) combinatorial complexity. Further,
RVD(S) can be constructed in O(n2+ε) time.

Proof sketch. Each site induces a distance function which maps each point in the plane
to its distance to that site. The RVD can be seen as a minimization diagram of these
distance functions. With a monotone increasing transformation we map these distance
functions to algebraic functions. Applying the transformations keeps the lower envelope
of the distance functions invariant. The lower envelope of these n algebraic functions has
O(n2+ε) combinatorial complexity and it can be constructed in O(n2+ε) time [17]. J

We can extend the Brocard Illumination problem to the plane as follows. We place an
α-floodlight fr on every r ∈ S such that fr is equal to r when α = 0. We want the minimum
angle α∗ for which the set {fr | r ∈ S} of α∗-floodlights illuminates the plane. The angle α∗
is realized at a point of maximum distance, which is either a vertex of RVD(S) or a point at
infinity on a ray of S. Hence, we can find α∗ by constructing RVD(S) and then traversing
the diagram in linear time in its size. Note that α∗ takes values in the interval (2π/n, 2π).

4 RVD of a convex polygon: Brocard illumination

We now turn our attention to the Brocard illumination problem. Given a convex polygon P
with n vertices, we describe an algorithm to compute the Brocard angle α∗ of P by means of
the RVD. Let SP be the set of n rays such that each ray has a vertex v ∈ P as apex, and
passes through the successor of v in the counterclockwise order of the vertices of P . Let
PRVD(SP ) be the part of RVD(SP ) restricted to the interior of P . Note that PRVD(SP )
has Θ(n) complexity, as opposed to RVD(SP ) which can have Θ(n2). We show the following.

I Theorem 4.1. Given a convex polygon P , we can construct PRVD(SP ) in Θ(n) time. The
Brocard angle of P can also be found in the same time.

Algorithm outline. We first partition SP into four sets SN ,SW ,SS and SE of consecutive
rays, such that any two rays in a subset have an angular difference at most π/2, see Fig. 6a.
For each set Sd, d ∈ {N,W,S,E}, we obtain a set Srd in which every ray of Sd is rotated by
an angle of −π/2. Then, we construct each diagram RVD(Srd) independently, see Fig. 6c.
Finally, we merge the four diagrams in two steps to obtain PRVD(SP ), see Figs. 7 and 8.

EuroCG’21
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Figure 6 (a) Partition of SP into sets SN ,SW ,SS and SE . (b) RVD(SS). (c) RVD(Sr
S)

Constructing the diagrams. To construct the diagram of each subset Srd in optimal Θ(|Srd |)
time, we make use of the abstract Voronoi diagrams framework [11, 12]. To fall under this
framework, the underlying system of bisectors must satisfy the following three axioms:

A1 The bisector b∠(r, s), ∀r, s ∈ Srd , is an unbounded Jordan curve.
A2 The region vreg(r) in RVD(S ′), ∀S ′ ⊆ Srd and ∀r ∈ S ′, is connected.
A3 The closure of the union of all regions in RVD(S ′), ∀S ′ ⊆ Srd , covers R2.

I Lemma 4.2. The system of bisectors of Srd satisfies the axioms A1-A3.

Proof sketch. A1 is satisfied since the rays are disjoint. A2 holds due to the rotation of
−π/2: after the rotation, no ray intersects twice any bisecting circle, thus no bounded faces
appear, see e.g., Figs. 6b and 6c. A3 is satisfied as each ray induces a distance function. J

The intuition for the rotation is twofold: On PRVD(SP ) only circular parts of bisectors
appear and under −π/2 rotation the circular parts of the bisectors remain the same. Note
that there does not exist a rotation angle for which the complete set SP satisfies axiom A2.

To construct RVD(Srd) we use the Θ(n)-time algorithm of [3]. Apart from satisfying
axioms A1-A3, [3] requires that the order of the regions of RVD(S ′) along a simple curve is
known, for any S ′ ⊆ Srd . Since, the rays are non-intersecting, this order coincides with the
order of the rays of S ′ along the boundary of the polygon. We obtain the following lemma.

I Lemma 4.3. RVD(Srd) is a tree of Θ(|Srd |) complexity. Further, RVD(Srd) can be con-
structed in Θ(|Srd |) time.

Merging the diagrams. We merge all four diagrams, in two steps, to obtain PRVD(SP ). In
a first step we merge RVD(SrW ) with RVD(SrS) to obtain RVD(SrW ∪ SrS), where the merge
curve consists of the first ray in each of SrW and SrS and the set of circular edges, which
are equidistant to both sets; see Fig. 7. We respectively obtain RVD(SrE ∪ SrN ). Then, in a
second step we merge the diagrams RVD(SrW ∪ SrS) and RVD(SrE ∪ SrN ), restricted to the
interior of P , to obtain PRVD(SP ); see Fig. 8. Using standard tracing techniques for Voronoi
diagrams and the properties of the angular bisectors, we can prove the following result.

I Lemma 4.4. Given RVD(Srd) ∀d ∈ {N,W,S,E}, PRVD(SP ) can be constructed in Θ(n) time.

Concluding this section, the Brocard angle of P , denoted by α∗, is realized at a point of
maximum distance in the interior of P which lies on a vertex of PRVD(SP ). Hence, we can
solve the Brocard Illumination problem in Θ(n) time, by constructing PRVD(SP ) and then
traversing it, to obtain α∗. Note that α∗ takes values in the interval (0, π/2− π/n].
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(a) (b) (c)

Figure 7 Merging diagrams (a) RVD(Sr
W ) and (b) RVD(Sr

S) into (c) RVD(Sr
W ∪ Sr

S).

s1

w1

(a) (b) (c)

Figure 8 Merging diagrams (a) RVD(Sr
W ∪ Sr

S) and (b) RVD(Sr
E ∪ Sr

N ) into (c) PRVD(SP ).

5 Concluding remarks

By means of the Rotating Rays Voronoi diagram, we showed how to find in optimal time the
Brocard angle of a convex polygon, settling an interesting geometric problem. Our method
is more general: given any domain D and a set of rays S, we can find the minimum angle
needed to illuminate D with floodlights aligned at S, by constructing RVD(S) inside D.

There are many questions to investigate. What is the worst case complexity of the diagram
in the plane? Is it Θ(n2)? Can the diagram in the plane be constructed in time o(n2+ε)?
How does our approach to compute the Brocard angle extend to other classes of polygons?
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