"Université
Nice POLYTECH
l Sopbia Antipolis NICE-SOPHIA

University of Nice Sophia Antipolis

DEPARTMENT OF COMPUTER SCIENCE

Master of Science in
Ubiquitous Networking and Computing

Research Internship Report

The Subset Interconnection Design
problem with Subset Uncertainty

Participant
Toannis Mantas

Supervisors
Christelle Caillouet
David Coudert

31/8/2016

Abstract

SUBSET INTERCONNECTION DESIGN is an NP — hard problem which
draws its motivation from various applications, such as the design of
scalable overlay networks, the inference of inter-molecular protein con-
nectivity, the design of vacuum systems and several other problems in
the industry. In that problem, we are given a set of vertices V' and
a collection S of subsets of V' and we want to find an edge set E of
minimum cardinality such that every subset S; of the collection .S in-
duces a connected subgraph of G = (V, E). In this work, we concern
ourselves with a generalization of the problem, which arises mainly
from computational structural biology and where our data is covered
by SUBSET UNCERTAINTY. Under this scope, V is partitioned into a
set of types T, and we are not aware of the exact composition of each
subset S;. We only know the number of vertices of each type that it is
composed by. So, apart from having to find the edge set F of minimum
cardinality respecting the constraints, we also have to find a collec-
tion S with such composition, that will lead us to the optimal edge
set. In the context of SUBSET UNCERTAINTY we start by formally
defining the problem and consider its hardness. Following, we analyse
the problem and the structure of the solution to give bounds for the
solution. Later on, we model the problem using an MILP approach.
Moreover, we present and analyse an approximation algorithm. Fi-
nally, we devise heuristics based on LP-relaxation and conclude by
making a series of experiments on different datasets comparing all the
aforementioned methods, and presenting the results.

Contents

1

Subset Interconnection Design
1.1 Description of the problem
1.2 Related work

Introducing Subset Uncertainty
2.1 Description of the problem
2.2 Complexity

Problem analysis
3.1 Bounding solutions from above
3.2 Feasibility, cycles and others

MILP formulation
4.1 Themodel
4.2 Observations and additional formulations

An approximation algorithm

5.1 Preliminary definitions
5.2 Algorithm presentation
5.3 Algorithm analysis

LP-based heuristics
6.1 Iterative Rounding of edges
6.2 Iterative Rounding of vertices

Experimental results
7.1 Experimental results oL
7.2 Comparison of algorithms

Conclusions
81 Summary
8.2 Further work

12
13
19

24
24
27

30
30
35
38

41
41
43

45
45
47

1 Subset Interconnection Design

This report is divided into eight main sections. In this first section we in-
troduce the original SID problem, formally define it and illustrate it with a
simple example for its further understanding. Following, we briefly consider
the related work, by making a small reference to its complexity, which is im-
portant when considering the problem, and we present a few other notable
results.

1.1 Description of the problem
Introduction

The problem we consider, SUBSET INTERCONNECTION DESIGN, draws its
motivation from various research areas. It has multifarious applications, and
for that reason, it has been studied by different research communities, usu-
ally independently and under several different names. It has been studied
as the SUBSET INTERCONNECTION DESIGN (SID) problem, for the design
of vacuum systems by the respective community [8,9,10] but also for the es-
tablishment of communication networks where there is a need for internal
connectivity of the subsets [19]. Moreover, it has been studied for the de-
sign of scalable overlay networks, referred as MINIMUM TOPIC-CONNECTED
OVERLAY (MIN-T'CO), where the goal is to support decentralized topic-
based publish/subscribe communication [5,6,7,13]. More lately, research has
been also made regarding the design of reconfigurable interconnection sys-
tems, referred as the INTERCONNECTION GRAPH PROBLEM (IGP) [11,12],
as well as with respect to inference of underlying social networks under the
general name NETWORK INFERENCE [4]. Finally, and more recently, it has
been studied, associating with structural biology, with the aim to infer the
pairwise contacts between the constituting proteins of macro-molecular as-
semblies [2,3]. We will focus more on this last application of SID, as it is the
scientific area from which we draw the motivation to study the generalization
of the SID where we consider SUBSET UNCERTAINTY.

Problem statement

As mentioned above, many different names and definitions have been given
to the problem. We formally define the problem as follows:

Definition 1 (SUBSET INTERCONNECTION DESIGN problem, SID)
Input: i) A vertex set V.

ii) A collections of subsets S = {S; | S; €V; andi € I € N}
Objective: Find a graph G = (V,E) such that:

i) Each induced subgraph G[S;] is connected.

ii) Edge set E is minimized.

Prosaically, our goal is to find a graph G = (V, E) whose edge set E both
minimizes the number of edges and complies to the set of connectivity con-
straints. Each of these connectivity constraints is actually represented by a
subset in the collection S.

An example

Figure 1 is an illustration of a small instance of the SID problem for the
better understanding of the problem.

List of users topic1 topic 2 a solution optimal solution
user 1: @ ®\ /@
user 2: @ @ @
user 3: @
user 4:
user 5:
@

List of topics topic 3 topic4
1:ug, uz, us
2:u, ug, Us
3:uz, us @ @
4: uz, us, Ug, Us

W@

Figure 1: A SID instance with two feasible solutions.

Suppose we are in a publish/subscribe topic-based context, as in [5,6,7,13],
and we have a set of users, V', who are interested in a set of topics S. We
want topic-connectivity to exist which means that all users interested in a
topic should be connected only through users interested in that topic. So,
as we can see in Figure 1, with |V| = 5 and |S| = 4, we observe that each
topic/subset imposes a connectivity constraint. Also, the figure illustrates
that in the optimal solution each G[S;] must induce a spanning tree. But,
as we can observe, it is not ensured that graph G will be a tree itself.

1.2 Related work
Complexity

To get a notion of the problem’s complexity we can consider the well-known
NP — hard problem, SET COVER, where, given a set of elements U =
{1,2,...,m}, called the universe, and a collection S of n sets whose union
equals the universe, the aim is to identify the smallest sub-collection of S
whose union equals the universe. From one perspective we can observe the
similarities between SID and SET COVER, although in SID, there is a fun-
damental difference, which is the extra topological constraint imposed by the
connectivity of the subsets.

Observing this relation between the two problems, we can get a intuition of
the complexity of SID. Nevertheless, it has been proved in several different
papers [2,7,8], that the optimization version of SID is an NP — hard prob-
lem, where most of the proofs rely on a reduction from the SET COVER.
Moreover, it has been proved that the SID problem cannot be approximated
within a constant factor in polynomial time [7]. Finally, the actual lower
bound of the inapproximability is Q(log(|V'|)) [4], where |V| is the number
of vertices of the input graph G.

Other results

We summarize some important results and approaches that have been made
for the SUBSET INTERCONNECTION DESIGN problem so far.

First of all, there is a greedy algorithm which yields a O(log|S|)— approximation,
where |S| is the number of subsets [2,4,7,19]. Tt is very similar to the well-
known greedy algorithm of the SET COVER problem and follows the same
rule by picking at each step the edge which belongs to the largest number of
subsets. This algorithm actually almost meets the lower bound of inapprox-
imability, which is, as we mentioned, Q(log(|V'|)). This algorithm will be
used as a part of the algorithms we later devise.

Another approach that has been done, is concerned with the divide & con-
quer design paradigm. An algorithm has been devised with respect to the
design of overlay networks for topic-based publish/subscribe systems [5]. In
that algorithm, random partitioning is used for the division of the problem,
and later, the partial solutions are combined in a greedy manner, similar to
the aforementioned algorithm. It is reported to be in position to output so-
lutions significantly faster than any other algorithm. However, it comes with
a slight increase in the number of edges, compared to the greedy algorithm.
It is expected to be of interest in applications of SID where the execution
time is more important than a potentially less optimal solution.

Moreover, the third approach that has been done is based on a Mixed Integer
Linear Programming formulation [2]. Tt was devised to deal with applications
of SID regarding structural biology and for that reason it is promising for
our problem. It has the advantage that it not only solves the problem to op-
timality but makes it also possible to output the set of all feasible solutions.
This is of high importance for the structural biology community, as it is of
high importance to analyze the solutions in order to evaluate the effective-
ness of the methods and the approaches, as well as the ways in which such
algorithms should be used. This linear programming modeling is done with
a flow — based formulation, the basis of which we use and expand accordingly
for the SUBSET UNCERTAINTY - SID in a later section. It has also been used
to solve the weighted version of the SID problem where the weight function
on the edges is a probability that represents the likelihood of appearance of
a potential edge given prior beliefs [3].

It must also be noted that other modifications of the general problem have
been studied. In particular there has been a study for a few alterations
which introduce topological constraints to the problem. Under that scope
either each vertex induced subgraph G[S;], or the whole graph G has to be
of specific graph classes [14,15,16]. The three main graph classes that have
been taken into consideration so far have been stars, paths and trees. Under
specific conditions there exist polynomial algorithms to solve SID for these
classes to optimality. At first place, and surely not in the modelling phase of
the SU-SID, these do not seem to have any relevance. But it is not unlikely,
that when we will be attempting to find ways to exploit the behavior of the
proteins and the oligomers, we are lead into one of these topological graph
classes, or others not yet studied.

Finally, some research has been done on the online version of the problem
aiming to infer social networks from outbreaks [4], which does not seem to
be of interest in our case, since our input is constant and not changing even-
tually. Several genetic algorithms have been devised and compared to the
aforementioned greedy algorithms [1]. And, there has also been interest to-
wards a polynomial-time data reduction [6] as well as in the approximability
and hardness of the problem for special instances [13].

2 Introducing Subset Uncertainty

In this second section of the report the notion of SUBSET UNCERTAINTY is
introduced, which is the main subject of this research. Initially, we explain
the motivation of the problem and its potential applications and illustrate
it with a simple example. Following we make some important observations
regarding the definition of the problem. Finally, we consider the complexity
of the problem by showing it is an NP — hard optimization problem.

2.1 Description of the problem
Motivation

As mentioned above, the motivation for the notion of SUBSET UNCERTAINTY
arises in structural biology. In order to understand this motivation clearly
we must first explain in detail how the initial problem, SID, is related with
structural biology.

Macro-molecular assemblies are massive chemical structures, many of which
involve from tens to hundreds of macro-molecules. Unfortunately, there is
very little information regarding their structure. Acquiring information for
their structure, by building corresponding models, is of high interest by the
respective research communities.

In that direction, there exist methods which involve biophysical experiments
that are in place to provide us information on the composing structures of
the macro-molecular assemblies, which are called oligomers. So, there arises
the need to infer the connectivity between these overlapping oligomers which
have been produced by several types of experiments.

We consider the whole macro-molecular assembly as a graph, the vertices as
proteins or molecules and the oligomers as subsets. By requiring connectivity
among proteins of each oligomer and looking to find the minimum number of
pair-wise contacts the application SUBSET INTERCONNECTION DESIGN in
Structural Biology becomes obvious. And only under this context, has the
inference of such protein contacts been studied until now [2,3].

If we want to look at the aforementioned problem more realistically, we will
have to make things more complicated though. Let us consider two well
known and widely used methods in structural biology.

e A solution to the Stoichiometry Determination problem gives us only
knowledge of the type of a molecule and partially of the structure of each

complex [20]. Therefore, by observing the relation, we are in position to
know which type every vertex belongs to.

e The outcome of the Native Mass Spectrometry method gives us the num-
ber of molecules of each type contained in an oligomer but not which specific
instances they are [21]. So, in the graph context, we now know how many
vertices of each type each subset must have, but not which particular ones.
These two combined, bring us to a situation where we are given an assem-
bly together with the list of constituting protein types as well as a list of
associated complexes. So, in order to be in place to deal with this problem
and efficiently provide information about the elucidation of the connectivity
between macro-molecular assemblies, it is necessary to find ways to solve
efficiently a generalization of SID, which we define as the SUBSET INTER-
CONNECTION DESIGN with SUBSET UNCERTAINTY.

Problem statement

We start by giving an initial definition to the problem. After explaining it,
we complement it with additional constraints to fully represent our problem
and the desirable solutions.

Definition 2.1 (Initial definition for SU-SID)
Input: i) A vertex set V.
it) A partition T of the vertex V.
i) A matriz, of subset specifications, M, where element m;
represents the number of vertices of type T; subset S; must have.
Objective: Find a graph G = (V,E) and a collection of subsets S such
that: i) Fach subset S; satisfies the corresponding vector M.
ii) Each induced subgraph G[S;] is connected.
iii) Edge set E is minimized.

o Note 1: We say that a vertex u is chosen by a subset S;, or respectively a
subset chooses a vertex, if u € .5;.

o Note 2: We say that a subset S; satisfies a vector M; if the exact number
of vertices of each type T} is chosen. Respectively, a matrix of subset speci-
fications M is satisfied if all vectors are satisfied, m;; = |.S; N T;].

In simple terms, we have a set of types of vertices T. Each vertex is of a
certain type and we are not aware of the exact composition of each subset,
but rather the number of vertices of each type that it is composed by. So
apart from having to find the edge set £ of minimum cardinality we also
have to ensure that the vertex specifications for each subset are respected.

An example

For a thorough understanding of the problem, a SU-SID instance, with
|V| =6, |T| =3 and |S| = 6, and an optimal solution is illustrated.

bg b2
bl bl
aq ay
(&) Cy C3 C1 Cog —— C3
M; =[1,1,0] V=T1UT,UT; S1 = {a1, b}
My =[0,1,1] Sy = {bg, c2}
My =[0,2,1] Ty ={a} Sy = {1, b, c2}
My =1[1,1,1] Ty = {by1, by} Sy = {a1, by, ca}
M; =[0,1,3] T5 = {c1,c2,c3} S5 = {b1,c1,c2,c3}

Figure 2: A SU-SID instance and an optimal solution.

On the left side of Figure 2, is the input of the problem for the given instance.
That is, a vertex set V partitioned into 3 types and the specifications matrix
M. On the right side, an optimal solution of the instance is illustrated. That
is an edge set F and a collection of subsets S satisfying M.

It is easy to observe that all the constraints posed in the definition of SU-
SID are satisfied. Also, we know that this is an optimal solution as G is a
tree, but we must note that this is not always the case.

Notes on the definition

The SU-SID problem, as we have defined it, is a generalization of the SUB-
SET INTERCONNECTION DESIGN problem. In SID we have only one con-
straint. That is, that each induced subgraph G[S;] should be connected,
which remains as it is, in Definition 2.1. In our problem we have to add
another constraint to ensure the correctness of our proposed generalization
which has to do with the correctness of the specifications matrix M.

But, we are studying the problem for a very specific application, that of Struc-
tural Biology, and as mentioned above, each element of the problem has a
physical representation. Therefore, we have to add additional constraints to

7

the definition in order to address the problem with respect to the application.

In [2], where SID was studied for the same motivation, the connectivity of
the total graph G was not required in the constraints. Nevertheless, it was
mentioned that the subsets in the collection S were overlapping. Indeed,
since we want to infer the connectivity in a macro-molecular assembly, it
would not make sense if a solution would include different connected compo-
nents. So, it should necessarily address the connectivity of graph G.

Following, we look into some solutions to a SU-SID instance, which will
guide us to impose the necessary extra constraints defining the problem with
respect to its applications. Suppose we have the following instance, illus-
trated in Figure 3.

s by by
M, =[2,1,0] V=TUT,UuT;
az M, =[1,1,1]
Ms =[1,2,1] Ty = {ay, as, as}
M4 = [07 17 1] T2 = {blab2}
a ¢ cy c3 M; =1[1,0,2] Ts = {c1, o, c3}

Figure 3: A SU-SID instance with |V| =8, |T| = 3 and |S| = 5.

Figure 4 illustrates an optimal solution to the given instance according to
Definition 2.1. We observe that the graph G is not connected.

as m B
/ Sy ={ag, a3,b,}
(05)) S2 = {a27b1702}
Sy = {ag, by, by, o}
Sy = {by, c2}
hh— &H— & c3 S5 = {ay, 1, ¢0}

Figure 4: An optimal solution with the initial definition.

We actually have a connected component and a set of disjoint vertices, which
is only vertex c3 in our case. To tackle this situation, the first idea would be
to add a constraint requiring that the total graph G is connected. So we add
an extra constraint to Definition 2.1.

iv) Graph G is connected.
Some possible solutions could be as follows.

a3\b1 b2
/ Sy = {a2>a3,bl}
as Sy = {ag, by, co}
Sy = {G27b1;b2702}
Sy = {52702}
hh— @ @ ---@ Ss = {a1, c1, ¢}

Figure 5: An optimal solution with the constraint that G is connected.

As seen in Figure 5, a feasible solution would be just to arbitrarily add
edges, between each disjoint vertex to the connected component, (cyc3) in our
case. This solution would actually be optimal as well. But for our problem,
this is not sufficient because although G would be connected, ¢3 would not
be chosen by any subset and (cyc3) could possibly be a false positive. In
Structural Biology, each vector M; € M comes from a series of experiments
conducted [20,21]. Therefore, connecting the graph G with edges which have
no physical meaning, and neglecting in that way input information, is in
the wrong direction. To avoid such solutions, we could add that each vertex
u € V 1is chosen by at least 1 subset.

a3 by by
,," Sl = {a2>a3abl}
Qs ,,' SQ = {a27blac3}
o Sy = {ag, b1, by, s}
"/ S4 = {b27c3}
) — &p— & C3 S5 = {ay, c1, co}

Figure 6: An optimal solution adding the constraint that G is connected
and that each vertex is chosen by at least 1 subset.

In Figure 6 we observe a situation similar with the aforementioned, but with

respect to the edges. There can be edges which are in the solution only to

ensure connectivity of G, in our case (a;,b;). But again, it is probable that

such edges can be false positives and must be avoided. So, we conclude that

(iv) is insufficient, and we have to add one more constraint to Definition 2.1:
v) Each edge e € E contributes to at least 1 subset.

oNote: We will say that an edge (uv) contributes to a subset S; if both
vertices u and v are chosen by S;.

Remark 2.1

By adding constraints (iv) and (v) in Definition 2.1, it follows that each ver-
tex will be chosen by at least 1 subset as well. The opposite is not true, as
shown in Figure 6.

Summarizing the aforementioned, we formally state our problem below, ex-
tending Definition 2.1. All work presented later, considers this definition.

Definition 2.2 (SUBSET INTERCONNECTION DESIGN with SUBSET UN-
CERTAINTY problem, SU-SID)
Input: i) A vertex set V.

i1) A partition T of the vertex V.

i) A matriz, of subset specifications, M, where element m;

represents the number of vertices of type T; subset S; must have.
Objective: Find a graph G = (V,E) and a collection of subsets S such
that: i) Fach subset S; satisfies the corresponding vector M.

ii) Each induced subgraph G[S;] is connected.

iii) Edge set E is minimized.

iv) Graph G is connected.

v) Each edge e € E contributes to at least 1 subset.

2.2 Complexity

In this section we analyse the complexity of our problem. We do not go in
depth to prove the hardness of SUBSET UNCERTAINTY - SID by reduction
but we rather explain how it is a generalization of SID. We also give a notion
of the high complexity of the problem caused by a combinatorial explosion.

Remark 2.2 (SU-SID hardness)

SU-SID is an N'P — hard optimization problem

As mentioned, SID has been proved to be an NP — hard problem for |V| > 2
[12,13] We can observe that SU-SID coincides with SID when each type of
vertices is a singleton. Since the vertices can only be of one type, there will
be a one-to-one correspondence between each u € V and each t € T, and
thus |V| = |T'| will hold.

Suppose we now have a smaller number of types with 2 < |T| < |V].
Even if we had one vertex of each type, connecting those vertices would

10

be NP — hard, since it would be an instance of SID. But in SU-SID we also
have to consider all the possible combinations that could lead to that prob-
lem. So, it becomes obvious, SU-SID is a generalization of SID. Therefore,
SU-SID is NP — hard. So, in any case, we have a problem which is at least
as hard as SID to solve.

We say it is at least as hard, because not knowing the exact composition of
the subsets means that all the possible combinations of vertices satisfying
the specifications of each subset should be considered. The product of all
the possible combinations of each set will lead to a, so called, combinatorial
explosion as the number of sets and vertices increases.

If we have |T'| = r and |S| = k and if m;; denotes the vertices of type T;
subset S; has, we will have a number of possible combinations which is of the
order, given by the formula below:

| 73] | 75| || |7 | 73] |75 | ||
(mn X mi2 e X my, e X My, X M1 X M2 X My

#combinations = O (ﬁ ﬁ(LZ;J'))

i=1 j=1 E

Summing up, we showed that SU-SID is a generalization of SID which is
an NP — hard problem. Therefore, SU-SID is also NP — hard. Moreover,
we explained that there exists a combinatorial explosion on the possible so-
lutions. So, we conclude that SU-SID is a highly complex problem. To
address this complexity and solve the problem efficiently will not be trivial.

11

3 Problem analysis

Analysing the problem and its solutions is fundamental to efficiently approach
it with any potential way. In this section we start by studying in depth the
structure of the solutions and providing a tight upper bound for the size of
any optimal solution. This is an important result on which we later base the
approximation algorithm that we devise. Following, we give some feasibility
criteria for the instances and try to identify cycles in the solutions. In this
way, it becomes possible to improve the lower bound on specific instances.
Finally, we present a few other various results.

Some assumptions, about the instances and their solutions, which are not
obvious but are crucial in the analysis, are the following two.

oAssumption 1: A vector M; € M is possible to be the same with one or
more vectors M; € M. Such a vector M; is considered different and cannot
be, in general, eliminated.

o Assumption 2: Suppose we have two or more vectors M;, M;, with i # j
which are are the same. Then it is possible to have S; = §;, meaning that
they can be satisfied by the same set of vertices.

The importance of these assumptions and how they can affect the solution
is illustrated in Figure 7. We are given an instance with:

V=T1UT,, T\={a,as}, Tp={by,bs}
M, =[2,0], My =[0,2], M3 = [1,1], My =[1,1], M5 = [1,1], Mg = [1,1]

by S1 = {a1, a2} b, S1 = {a1, a2}

/ \ Sy = {by, bo} \ Sy = {by, ba}
ay by S3 ; {a1, b1} ay b, S3 ; {ay, b1}
I Sy ={ay, b} Sy ={ay, b1}

\ / S5 = {az, b1} \ S5 = {ai,b1}
& Se = {az, b} “ Se = {a1,b1}

Figure 7: An instance of SU-SID and two different optimal solution,
according to different assumptions.

It is easy to observe that when the vectors have to be satisfied by different
vertex sets it is possible to have an optimal solution of Ky, as on the left.
Therefore, the size of the solution has the same upper bound as SID. On
the contrary, on the right side, we observe a completely different optimal
solution. The difference is structural, as we prove right after.

12

3.1 Bounding solutions from above
An improved upper bound

Theorem 3.1 (Upper bound for optimal solutions)
Given an instance of SU-SID with a set of vertices V' partitioned into a set
of types T, the size of an optimal solution |Eopr| is bounded by:

T x (T -1
(Eoprl < LU= D (1)

Proof.

>Case |T| = 1. As we have mentioned before, for |T'| = 1, the problem is
actually different. There is no uncertainty involved and by finding a spanning
tree on the vertex set all the conditions will be satisfied and the problem will
be solved. In any case (1) holds even for |T'| = 1 since the solution will be a
tree, the upper (and lower) bound for a solution will be |[V| — 1.

>Case |T| = |V|. In the case where |T| = |V| every type of vertices is a
singleton and it becomes obvious that no uncertainty is involved. In this case
our problem becomes equivalent to SID. We know that in SID the upper
bound is the complete graph Ky,. Thus, replacing (1) with |T'| = |V, we
have |Eppr| < %, which holds.

o Note: Such an instance for SID can be easily created if there exists a subset
S; V¥ (uv), where u,v € V and u # v.

>Case 1 < |T| < |V|. We give a constructive proof by a providing an
algorithm which takes an instance of SU-SID and yields, in polynomial
time, a feasible solution of size |Egy_sip| = W+ |V|=|T'|. Therefore,
since we give a feasible solution of that size, the optimal solution | Eopp| will
always be smaller or equal, |Eppr| < |Esy_sipl, and thus (1) holds. [

A constructive proof

The algorithm that yields in polynomial time a feasible solution of that size
can be describes as follows:

13

Algorithm 1: Solving SU-SID with |E,,| = XD oy — 7.

Result: Given a SU-SID instance with vertex set V' a partition T" and
a matrix M, returns a graph G = (V, E) and a collection S.

1 for each T; € T do

2 select a vertex u € T} as representative 7,

3 [; < maxm,;

a F,; « |}%;]S edges between representatives.

5 for each T; € T do

6 ‘ Es « Egp U |l;]| =1 edges between r; and u € T

7 for each M; € M do

8 ‘ satisfy M; specifications by choosing connected vertices
9 for each v €V do

10 con,, < number of subsets u contributes

11 for each T; € T' do

12 for each u € T; with con, =0 do

13 select a subset .S; where m;; > 0

14 if m;; > 1 then

15 select v € T; where v chosen by S;, v # r; and con, > 1
16 replace v chosen by S; with u

17 con,, = con, — 1, con,, = con,, + 1

18 Egor < Ego U (ur;)

19 else if m,;; = 1 then

20 replace r; chosen by S; with u

21 con,, = con,., — 1, con,, = con, + 1

22 E, < E, U (ury,), where x € T such that m;, > 0

23 return G = (V, E,,), S

Algorithm Ezxplanation

e In lines 1 — 3, the algorithm arbitrarily selects a vertex u € T;, V1, € T
as a representative r; of that type. The value [;, is the maximum number of
vertices of T; any subset requires.

e In line 4, a complete graph, Kp, is formed on all the representatives and
the corresponding edges are added in the solution F,,.

e In lines 5 — 6, for each T € T', [; — 1 vertices are connected to r;.

e In lines 7—8, all the vectors are satisfied by choosing among the connected
vertices. Obviously, at this point all the vectors can be satisfied since we
have connected the maximum number of vertices presented for each type ;.
So, at this point we have acquired a collection S. Also, we have created a
1 to 1 connection between all types by forming the complete graph between

14

representatives.
e In lines 8 — 9, value con,, is assigned to each vertex u, showing the number
of subsets u contributes. All disjoint vertices will have a contribution of 0.
e Finally, in lines 11 —22, all the vertices are connected appropriately without
affecting the subsets being satisfied. This is done as follows. For each disjoint
vertex u, belonging to type T}, we arbitrarily select one subset, say S;, where
at least one vertex of that type is required, m;; > 0.
> If more than 1 vertices of T} are required by S;, in lines 14 — 18, a vertex v
is selected to replace u for the given subset. Vertex v must be different than
the corresponding representative, v # r;, and must contribute to more than
one subset. After updating the vertex contributions vertex u is connected,
by adding the edge (ur;).
> In the case where only 1 vertex of T} is required, in lines 19 — 22, any
representative r, from the vertices already chosen by S;, is selected, and
then replaces r; with u. Afterwards vertex u is connected by adding edge
(ur,) and the corresponding contributions are updated.

Algorithm illustration

In the following series of images we illustrate the algorithm step by step by
applying it on an instance with |V| = 12, |T| = 4 and |S| = 4.

Ml = [2707170] b b
M2 = [0)1)]—71] 2 3
M3 = [3707072]
a

M, =[1,2,1,2] 2 b

as (45] (&1 Co
V=T,uL,uTl.uTly,
T, = {a1,az, a3, a4} o dy
Tb = {blab27b3}
T, = {c1, c2} ds dy
Td = {dl)d27d3}

Figure 8: An instance of SU-SID with |S| =4, |V| =12, |T| =4

In Figure 9, we observe that representatives have been chosen and the [;
values have been found. We also have the edge set E,, consisting of |Krp|
and [; — 1 edges of each type.

15

ld = a4 Qg

@ &6 @ 9 o

Ty = bl
fe =0 ds dy ds dy
rq = d1

Figure 9: Left side illustrates lines 1 — 3 of Algorithm 1. Right side
illustrates lines 4 — 6.

In Figure 10, we observe that there is a collection of subsets S which satisfies
the specification matrix M, with the minimum number of vertices. Also the
contribution of each vertex u € V' has been calculated.

Sy ={ai,a9,c1}

Sy = {b1,c1,d}

Ss = {ay,as,a3,d;,dy}
Sy =A{ay,b1,by,c1,dy,dy}

Figure 10: Hlustration of lines 7 — 10 of Algorithm 1.

Following, in Figure 11, is illustrated the last part of the algorithm. It is easy
to observe the step by step transformation in the composition of the subsets
and the contribution of each vertex in order to obtain a feasible solution.
Both cases where m,; > 1 and where m,; = 1 are clearly depicted, on left and
right side, respectively.

16

ay 0] 2

1
a3ﬂ ay 3 €0
1 3
(¢5)
1 3
2R SR
g1 21
S1 = {a1,99504, c1} S1 = {ay,a4,1}
Sy = {b1,c1,d1} Sy = {bribs, c1,d1}
S3 = {017027037611%%} S3 = {a17a27a3,d1,d3}
Sy ={ay,b1,b9,¢1,dy,do} Sy = {a1,by1,ba,cxi00, dy, do}

Figure 11: Hlustration of lines 11 — 22 of Algorithm 1. Left side depicts
lines 14 — 18 and right lines 19 — 22.

Finally, in Figure 12 the solution yielded by Algorithm 1 is illustrated. We
observe the collection S and graph G' = (V, Ego1), where | E,,;| = %+
|V| = |T'|. Also, for the sake of completeness the final contribution of each
vertex when the algorithm terminated is illustrated.

bg]_ b3].
a
Sy = {a17a4701} 14 1
53={017a27a3,d17d3} 2 : 2 p L
Sy = {a1,b1,b2,¢2,dy,da} 1a2 3
1 3
ds dy
1 1

Figure 12: A solution of Algorithm 1 applied to the instance of Figure 8.

Correctness of the algorithm

Proposition 3.1: (Algorithm 1 correctness)
Algorithm 1 for SU-SID vyields always a feasible solution.

17

Proof. To prove that a solution obtained from Algorithm 1 is feasible, we
show that all constraints, as stated in Definition 2.2 are respected.

i) Fach subset S; satisfies the corresponding vector M;. By line 8, we have
a collection S where each S; satisfies corresponding M;. In lines 16 and 20
any replacement that takes place, is done only between vertices of the same
type. Therefore, satisfaction of matrix M is not violated.

ii) Fach induced subgraph G[S;] is connected. As previously, until line 8, be-
fore the replacements start V .S; € S, G[S;] is connected. That connectivity
is maintained after each replacement. This is because each new vertex u € T}
chosen will be directly connected with an edge (ur,). And by the algorithm
all representatives are pairwise connected. So, regardless if r, = r; or else,
the connectivity of G[S;] is not violated.

iv) Graph G is connected. The algorithm terminates only when Vu €
V,con, > 0. Value con shows the number of subsets a vertex has been
chosen by. Since, each G[S;] is connected and con, = 1, Vu € V, then G is
connected.

v) Fach edge e € E contributes to at least 1 subset. For the edges which
connect vertices to representatives, this is true. Since, each such vertex u is
chosen by at least 1 subset .S;, it is connected with exactly 1 edge to some
reprentative r,. Then edge (ur,) will contribute to at least that subset S;.
For the edges between representatives this arguement is not completely true
as we defined the algorithm. It is possible that some of those edges do not
contribute to any subset. Nevertheless, it is possible to add a variable, de-
noted count, depicting the contribution ¥ e € E and simply remove all edges
where count, = 0 in the end. We avoided it for the sake of simplicity. [

Tightness of the upper bound

Proposition 3.2: (Tightness of upper bound)
The upper bound for any optimal solution to SU-SID provided in Theorem
3.1, LD o vy — |7, s tight.

Proof. We will prove the tightness of the upper bound by giving a category of
instances where the optimal solution, Eypr, is always of that size, |Eopr| =
W + |V| = |T'|. Such an instance can be created as follows.

i) We take all 3 — combinations of the set of types T'. So we will have ('gl)
possible combinations.

i) For each of these combinations, containing types 7;, 7}, T} we will add 3
vectors M,, My, M, of the following form.

18

T... T, T, T. T
M,=|[0,.. |T}| |T,] 0 ..0]
My=|[0,.. 0 |T,] |T,] ..0]

So, we will have a specifications matrix M with 3 X ('g') vectors.

Finally, we will have an instance with V', T and a collection of size |S| =
3 X (El)- Each triplet of such vectors will impose a cycle between vertices
of the corresponding 3 types. This will be taking place until a cycle between
each triplet of types has been created and the remaining vectors can be satis-
fied by those. So, since all the vertices will be connected we will have |V| -1
edges. And since that many cycles will have been imposed, we will end up
with a solution of size |Eppr| = W +|V|-|T|. O

oNote 1: In such instances we can remove any duplicate vectors without
affecting the solution.

oNote 2: A more thorough understanding of such instances should come
right after when we study this behaviour. This is done in order to infer in-
stances where the lower bound of the size of the solutions is increased.

3.2 Feasibility, cycles and others
Feasibility of instances
Identifying the conditions an instance satisfies, in order to be feasible is im-

portant. Those conditions can be used in later proofs.

Lemma 3.1 (Feasibility conditions of instances)
A feasible SU-SID instances satisfies the following conditions:

i) VT, eT: > my = |Ty
S;€S
i) Y (Y my-1)z[|V]-1
S;€S T]ET

Proof. (i) We require that each vertex u € V' is chosen by at least 1 subset
S; € S. Therefore, it is easy to observe that for ever type T},) ¢ cgmi; = |T;]
holds. (i17) We require that each edge e = (uv) in the solution contributes
to at least 1 subset S; € S. Equivalently, endpoints vertices u, v, must have
been chosen both by at least 1 subset. We also observed, previously, that in
an optimal solution, each induced subgraph G[S;] is a tree. Thus, it holds
that V.S; € S each G[S;] has exactly ZTjeT m;; — 1 edges. Since, the lower

19

bound for a feasible solution is a tree, then all subsets must induce at least
|V| — 1 edges and (ii) holds. [

We must note that these conditions are not sufficient for an instance to be
feasible. For example, there is one case that is not covered by Lemma 3.1.
These conditions do not avoid the creation of a forest. Such a solution is not
feasible and an instance is illustrated below in Figure 13. We can observe that
even though condition are satisfied, the edges are not sufficient to connect
graph GG , making the instance infeasible.

b2""b1""b3
M, =[2,0,0,0] 5
M, =[3,0,0,1]
M, =[0,2,0.0] ® & P
M, =10,3,0,1] ‘ay ---d, ds --- C1
M; =10,0,2,0] R
Mg =[0,0,3,1] a3 s

Figure 13: An infeasible SU-SID instance leading to a forest

We conclude that, knowing in advance if an instance is infeasible is important.
Finding a way to do so, may not be trivial. So, it remains open how we can
efficiently express all feasibility conditions for SU-SID instances.

Identifying cycles

As mentioned due to the complexity of SU-SID we do not expect to be
solving instances to optimality, after some particular size. So, it is likely
that we will be obtaining approximate solutions. Until now we have given an
upper bound for the size of the optimal solutions. Moreover, we have shown
the trivial lower bound of |E,,| = |V| — 1. But we have seen that in many
instances the optimal solution is greater than |V| — 1.

It is very important to be in place to identify in which cases the optimal
solution of an instance is greater than |V| — 1. In this way it is possible to
have a better understanding of the quality of the solutions we obtain. Since,
in that way we will be comparing our solution with a tighter lower bound
than that yielded by the graph connectivity constraint.

Towards that direction we present some preliminary results and give two

conjectures about the creation of cycles in the solution. We believe the con-
jectures are true and it would be high interest to prove them. Obviously,

20

each cycle in the optimal solution, increases |E,,| by 1. The optimality gap
between an obtained solution will be respectively decreased.

Conjecture 3.1 (Size of the optimal solution)
Given a SU-SID instance, if VT; € T : my; < |T;|, VM; € M, then for the
optimal solution, |E,,| = |V| =1 holds.

SU-SID has a high complexity due to large number of possible combinations
for each subset as seen in a previous section. All vertices of a type u € T} are
equivalent, so there exists a high symmetry between the possible solution.
So, from a different perspective, the larger number of possible combinations
can be seen as a bigger flexibility in finding solutions of smaller size. This
perspective can also be justified by Theorem 3.1, where the higher the uncer-
tainty the more bounded the size of an optimal solution is. What Conjecture
3.1 represents, is our strong intuition that only such cases can constrain that
flexibility. So, only when there are subsets that require the maximum num-
ber of vertices of some type, can additional edges to the optimal solution be
imposed.

Proving Conjecture 3.1 is of high interest. It is also highly interesting to
specify more the cases were cycles are created, and identify them. In this
direction lay the next observations. We gradually note down patterns or sub-
matrices in M, that create cycles in the optimal solutions.

In Proposition 3.2 we proved the tightness of the upper bound by a providing
a category of instances where the optimal solution has size of |Eopr| =
W + |V| = |T'|. But we actually observe, that it is only sufficient for
each m;; = |T;| to appear only once as in the following table.

T, T, T T, Tir
M, = | [0, ... 1T} 1< m,, < |T)] 0 ..0]
Mb = [0, O |7—‘]| 1< My < |Tk| 0]
Mc = [Oa U Me; < |7—;| 0 |Tk:| 0]

Moreover, it seems that this is not so strict as well. As we can see in the
following table, more columns which are part of these submatrices can have

m;; values with 1 < m;; < |T;|, for some M; and T}.

... T T, . Tp
M, = | [0,... |T;] Mej 21 mg 21 ..0]
My=1[0,... my =1 | ;] my, =1 ..0]
M.=|[0,... my=21 m, =21 |75 | ...0]

21

Finally it is possible for a cycle to be created among more than three types,
as long as these vectors do not include all types T; € T'.

T... T, T, T T, T
M,=[[0,... |T)| mg=1 0 0 ..0]
M, = | [o0, ... 0 T, g 21 0 ..0]
M, = | [o,... 0 0 IT.] mgz1 ..0]
My=1[0,.. my=1 0 0 1T, ..0]

Conjecture 3.2 (Cycles in the optimal solution)
Suppose a set of vectors in M creates a cycle in the optimal solution. This
cycle is also preserved after any rows (or columns) are removed (or added).

This conjecture states that, if some vectors lead to the creation of a cycle
between some types in the optimal solution, this is independent of the other
vectors and types. In that way, if the submatrices in M that lead to cycles
are strictly defined, possibly we will be able to identify them in advance. Of
course when any column or row is removed, we should always respect the
feasibility of the instance.

In Figure 14 three SU-SID instances, where cycles are part of the optimal
solution, are illustrated. For the instances, V = T, U T, U T, U T; with
Ta = {a17a2}7 Tb = {b17b2}7 Tc = {01702} and Td = {dladQ}

by —bo by —0by by ——bo
az \Cl a2 \01
a’l C2 a]_ 62
do dy do — dy
Ml = [27 1a070] Ml = [25 1707()] Ml = [2, 1,0,0]
M2 = [072a 1a0] M2 = [0727170:| MQ = [0727 1,0]
M3 = [170,2,0] M3 = [15072701 M3 = [1,0,2,0]
M4 = [0707]-a 1] M4 = [0a07271:| M4 = [070,2, 1]
M5 = [07]-707 1] M5 = [07 17072] M5 = [O, 1,0,2]
M7 = [2707 130]
M8 = [17070a2]

Figure 14: Instances with cycles in their optimal solutions

22

We observe how the aforementioned submatrices (or patterns) that exist in
M, cause the creation of cycles between the respective types. On the left
instance, we have a cycle between T,,7T;, and 7T, caused by vectors M;, M,
and Mj3. Respectively for the other two instances, a triple of vectors creates a
cycle between 3 types. We most note that on the right instance, the optimal
solution has reached the upper bound given by Theorem 3.1. Therefore, any
additional vectors leading to a new potential cycle, e.g. between T,,T;, Ty
would be satisfied by existing edges, in an optimal solution.

Other results

Corollary 3.2 (From Theorem 3.1)

Given an instance of SU-SID with a set of vertices V' partitioned into two
types, |T| = 2, the optimal solution will always be a tree. Thus, |Eppr| =
|V| = 1, and such a solution can be found in polynomial time.

Proof. From Theorem 3.1, and for |T'| = 2 we have |Egpr| < |V| — 1. Since,
it also holds that |Eopr| = |V| = 1, we conclude that |Eopr| = |V]| =1,
when |T'| = 2. Thus the graph is a tree and such a solution can be found in
polynomial time by applying Algorithm 1. [J

What this corollary states is that our problem is NP — hard for |T| = 3.
This was not obvious at first, since we expected the opposite behaviour for
|T| = 2. We deduce that the more uncertainty there is, the more complex
it is to find an optimal solution. But on the other hand, the size of such a
solution is more bounded.

Conjecture 3.3 (Intra-type connectivity)

Given an optimal solution to the SU-SID problem, the induced subgraph
G[T;], YT, € T, does not contain any cycles.

Our intuition is that, supposedly there was one cycle. There would always
be a step of transformations that could be done to an edge of that cycle.
A transformation would be a change in the composition of some subsets.
Possibly with the choosing of another endpoint vertex u neighbouring the
endpoint vertex of the edge which was removed.

This proposition gives some valuable information regarding the structure of

the solutions. Knowing that there do not exist cycles between vertices of any
type T; € T, is useful and can be potentially be exploited.

23

4 MILP formulation

In this section we model our problem using Mixed Integer Linear Program-
ming, denoted MILP. In general solving MILP in polynomial time is not
possible, and therefore has its limitations. Nevertheless, this approach makes
it possible to solve the problem to optimality. We start by presenting the
mathematical model and explaining it in depth. Following, we make some
important observation on the formulation we followed. Finally, we give some
formulations of additional constraints which can be of use with respect to
its applications. We must note that this is the model implemented and later
used for our experiments which are presented in a next section.

4.1 The model

For the modelling we extend the existing MILP formulation for SID, which is
based on flows [2]. First we present the variables used to model the problem,
then presents the constraints of our formulation and explain them.

_ |1 if edge e is selected.
Ve = 0 otherwise.

;|1 if edge e belongs to G[S;].
0 otherwise.

; {1 if vertex u is chosen by subset S;.

0 otherwise.

; {1 if vertex e is the source of flow for G[5,].
s =

0 otherwise.

f; : quantity of flow originating from o; and going through arc a.

We denote by A; (u), (resp.A; (u)), the subsets of arcs of D[S;] exiting,
(resp. entering) node u, and by |S;| the total number of vertices of each type
required by each vector M;, |S;| = ZTjeT m;;. For the sake of the connectiv-
ity of the graph G we arbitrarily choose a u € V' as a source and denote it src.

The formulation, given the above notations and assumptions, is as follows:

24

minimize Z Ye (1)

eeEF
subject to:
> z=my NT,eT, S;es (2
ueTj
Y = Vses 3)
ueV
Y fom) fa=US]s) -2 Yuev, Sies (4)
a€A(u)* a€A(u)”
V-1 ifu=
> fa- Y fa={ VI—L ifu=sre ey (4a)
se ity we Aty -1 if u # sre
fo = 1Sil - Yoy YacA Sies (5
fas |v|°ye(a) JVCLEA (53“)
vy < 2 YV (w)€E, 5 €5 (6)
yzv < zf, YV (w)eE, S;e8 (7)
Ve =yl VS €S, eeE (8
ves Yy ue Ve€ekE (9)

S;€S

Solving an instance of SU-SID problem consists of minimizing the number
of edges while having a feasible solution. Therefore, we have introduced one
binary variable y, for each possible edge e = (uv) of the undirected complete
graph on |V| vertices. Objective function (1) expresses this minimization of
the edge variables y. We also form the directed graph D = (V, A) where two
arcs a = (u,v) and @' = (v, u) replace each edge e = (uv), which is necessary
to express the flow. We denote by e(a) the edge that corresponds to arcs a
and a'. Thus, a feasible solution must satisfy the following:

e To ensure the correctness of subsets we have introduced the z binary vari-
ables, for every vertex u and each subset S;. This is done in Equation (2)
where it is checked that every subset S; € S has the exact number of ver-
tices of each type T € T', as specified by the subsets specifications matrix M.

e As mentioned, since we have a flow-based formulation, we need a source

of flow for each subset. As, we do not know the exact composition of each
subset we cannot assign any vertex as a source in advance. So, we introduce

25

the s binary variable, for each vertex u and each subset S; . With Equation
(3) we ensure that in each subset exactly one vertex u will be chosen as a
source. This is necessary, as otherwise we could have two ore more connected
components in each subset, thus violating the subset connectivity constraint.

e To enforce the connectivity of subsets, we provide each source with flow
that must reach all other vertices chosen in S;, by using only arcs on D[S;].
The continuous variables f. € IR are introduced for this reason. They ex-
press the quantity of flow of each subset S; going through arc a. Equation
4 expresses the flow conservation constraint. If the vertex is chosen and is
not the source then we will have 1 unit of flow collected. If the vertex is
chosen and is also the source then |S;| — 1 units of flow will originate from
that vertex. In any other case the value will be 0 meaning that it will not
affect the flow occurring for .S;.

e Inequality (5) expresses two main things. Firstly, it expresses the capacity
constraints. Meaning that, no flow can use arc a when the corresponding
edge is not chosen and that the flow circulating along any subgraph G[S;]
never exceeds the number of vertices in that subgraph, |S;|. Secondly, the
symmetry that if there is some flow through the arcs a = (u,v) or a' = (v,u),
only then the corresponding edge e = (uv) can be selected by a subset.

e Constraints (4a) and (5a) similarly to (4) and (5) satisfy the connectivity of
the graph of the solution G = (V, E). As mentioned src can be any vertex.
So, we have a flow of |V| — 1 units originating from src¢, and each vertex
u # src collects 1 unit.

e Incqualities (6) and (7) make sure that vertices u and v are chosen by a
subset S; if the corresponding edge e = (uv) contributes to that subset.

e Constraint (8) ensures that if an edge e contributes to one or more subsets,
then e will be part of the solution.

e Inequality (9) assures that an edge e which is part of the solution must
contribute to at least one subsets as required by the definition of the problem.

26

4.2 Observations and additional formulations
Notes on the model

oNote 1: Constraints (4a) and (5a) are necessary, as mentioned, to en-
sure the connectivity of the graph G = (V, E). A thought for simplifying
the formulation by adding one extra vector/subset containing all vertices,
M, = [ITh], | T3], ..., |T,|], is wrong. This is because, it can lead to the
false-positive edges which were explained in the problem definition.

oNote 2: In an extended model we would also have a real variable x, €
[0,1]. This would be positive if arc a carried flow for subset S;. In that way
the symmetry and capacity constraints would be separated and be easier to
observe. It was redundant so we have ignored it. Nevertheless, for the sake
of completeness we show how Inequality (5), resp. (5a), would be replaced.

<18 -2l VaeA S, €8
xZSyi(a) ,VYaeA S5, €8

oNote 3: The formulation can be turned into a decision formulation. This can
be done by removing the objective function (1) and by introducing Inequality
(10). This will give a feasible solution with k or less edges, if one exists.

Y yesk (10)

eeE

oNote 4: Moreover, by using the decision formulation it is possible to enu-
merate all feasible solutions of size k£ or less. This can be done by adding
Constraint (11). Every time a solution is found with |E,y| < k we should
add it to S, which represents the solutions found so far. If we repeat the
procedure until no feasible solutions exist, we will have acquired all solu-
tion |E,y| < k. We must note that with (11) two solutions are considered
different with respect to the edge set F, ignoring the subset composition S.

> ye<k ,VEL,€S (11)

e€EF 01

Additional constraints

We present a few extra constraints that have been implemented and can be
useful additions to the model according to the application.

The first one, bounds the mazimum degree of graph G, A(G), by a value,
denoted max DEG. It refers to the maximum number of neighbours of any

27

vertex in the graph. This can be useful in the context of Structural Biology
where we can expect a solution to have a bounded degree, due to natural
space limitations. It can be represented with the following constraint.

veV

For the same motivation, it can be of use to bound the maximum number of
types of vertices any vertex is neighbouring with by a value, denoted maxN'T'.
To make this possible we have to introduce a new binary variable n/, and two
constraints, (13) and (14), as follows.

u

j 1 if vertex u neighbours with a vertex of type T;.
0 otherwise.

Z niﬁmawNT NYueV (13)
TJET
y(m)Sn{L Novel;, T,€T, ueV (14)

Finally, it is possible to bound the diameter D of the graph G, by a value, de-
noted maxD. The diameter can be defined as the greatest distance between
any pair of vertices. We have used the formulation presented in previous
work [18], which we present. We need to define a binary variable ,p,, and an
integral variable b, and four additional constraints, (15) - (18).

vPu =

s 1 if u is parent of v in the spanning tree rooted at s.
0 otherwise.

h. :the height of u in the spanning tree rooted at s, ki, € Z".

. 0 ifv=
vau={ Y77 YuevVVsev (15)

= 1 ifv#s
hi—hi+(maxD+1)~vaSmaxD~yi(a) NYuveV,¥VseV (16)
h. < maxD NueVV¥seV (17)
% Y NuveV,¥seV (18)

28

The main idea of the formulation is that for every vertex u we consider a
spanning tree rooted in, u = s. Thus, by constraining that no tree has more
height than max D, we force graph G to have a diameter at most maxD.

An alternative modelling

While modelling the problem, the main difficulty consists of satisfying the
connectivity of each induced subgraph G[S;]. It gets even more complicated
as we do not know in advance the exact composition of each subset in matter
of vertices. On the proposed model we decided to add the extra variable s;,,
to represent if a vertex u is chosen as the source of subset S;. So, in total we
add |V| x | S| variables and |S| constraints.

Another alternative way to handle the subset uncertainty for the connectiv-
ity is the following. We construct an extended graph by adding V .S; € S a
meta-source, denoted o;. Then V S; we select one type of vertices, denoted
T(0;), and add an edge e = (uo;), Vu € T(0;). So we now have a graph
G'= (V' E"), where |V'| = |V| +|S| and |E'| = |Kv| + |S] - |V].

Afterwards, Equations (3) and (4) should be replaced with the following.

Z yaiuz]- 7VSi€S (3)
u€T(o;)
i i Si| ifu=o0;
Z Ja = z fa:{ | | nu=g NYueV, S;eS (4
acA(u)* a€A(u)” —z, fu#o;

Equation (3) now represents that only one edge should exist between the
source of each subset so that the corresponding subgraph will be connected.
And, Equation (4) as before represents that from the source |S;| units of flow
are emitted. Similarly, each other vertex collects 1 unit of flow. Finally, by
the end, the meta-sources should not be considered in the solution.

We observe, that there is a trade-off between the two formulations which lead
to the same results. The first one has a larger set of variables but the other
is solved on an extended graph. It is not clear which one of the formulations
is better, and in fact it seems to depend on the instances. Finally, we should
note that there can be possibly more different formulations, as graph con-
nectivity is a well-studied problem in the literature.

29

5 An approximation algorithm

In this section we propose an approximation algorithm for SU-SID. Initially,
we give some definitions and algorithms which will be used as a part of our
main algorithm. Following, we present the algorithm, explain it and illustrate
it with a small instance. Finally, we analyse the algorithm, by proving its
correctness, its complexity and looking into its approximation ratio.

5.1 Preliminary definitions
Representability

In this sections the notions of represantibility and representative vertices are
expressed which is the main concept that is later used in the algorithm.

Definition 5.1 (Representability criterion)

We are given a SU-SID instance with a specifications matriz M and a vertex
set V' partitioned into T' types. A type of vertices T; will be called repre-
sentable if it satisfies the following criterion:

> (my-1)=z |7y -1

S¢€Simi]'>1

oNote: If T} is representable ¥V T; € T', then the instance is representable.

That criterion indicates that there exists a feasible solution to an instance,
where a vertex u € Tj is chosen by every S; € S with m;; > 1.
Suppose we have four instances with |7};| = 5 and the following matrices M.

Instance 1: Instance 2:

M, =[.,1,..] M, =1..3..] Instance 3: Instance 4:
My=1].,1,..] My,=1..2..] M, =1..,3,..] M, =1..3..]
Ms=1.,1,..] Ms;=1..,1,..] My=1...,2,..] My=1..,2..]
My=[tnd| [Mi=Tootd] | dp=Ltd] | My=[oo3..]
Ms=1.,1,..] Ms=1..,1,..]

Figure 15: Ilustration of 4 different instances, 2 representable and 2 not.

We have |T;| =1 =4 and) s;es:(m,;; —1) = 0,4, 3,5 respectively. Therefore,
m;;i>1
according to Definition 5.1, instances 2,4 are representable and 1,3 not.

30

Choosing types representative-wise

Definition 5.2 (Rep-wise choosing)

We are given a SU-SID wnstance with a specifications matriz M and a par-

tition of wertices T'. For a type T; a vertex u € Tj is arbitrarily selected.

Vertez u is called representative, denoted ;. In a collection S, a type T;

will have been rep-wise chosen if the following hold:

)1t satisfies the corresponding column M; of matriz M according to SU-
SID Definition .

1) The representative r; is chosen by the mazimum number of subsets.

iti)A vertex uw € T; \ {r;} chosen by a subset S; where r; ¢ S;, cannot be
any other subset Sy, where r; € Sj.

Having types of vertices rep-wise chosen prosaically means that, if a type is
representable it is simply chosen by each subset S; € S : m;; > 1. If it is not,
it is chosen by the most subsets possible while maintaining feasibility.

Below we consider the instances depicted in Figure 15 and we illustrate how
they would be if they were rep-wise chosen. Partitionis T; = {uy, us, us, g, us}

and u; is selected as the representative r;.

Inst. 1: |chosen |Inst. 2: |chosen |Inst. 3: |chosen |Inst. 4: |chosen
my; =1 r; my; = rj, U, uz | Mij = Iy, Ug, U | M1 = 3 Ty, U2, U3
mgj =1 Uy moj; = Iy, Ug Mma; = T, Ug Maj =2 |Tj,Us, Us
mgj =1 U3 mg; = Us ma; = us mg; =3 | Ty, Up
my; =1 Uy my; = T

mg; =1 us msj = r;

Figure 16: Type Tj of Figure 15 instances being rep-wise chosen.

Corollary 5.1 (Number of subsets containing the representative)
Given a SU-SID instance, we have a type of vertices T; which is rep-wise

chosen. The corresponding representative r; will be chosen by:

max() 1,) (my—1)+1)

S;ES: S;€S:

m;;>0 m;;>1
Proof. The left part of the function is straightforward. It is the case of
representable types, where by definition there exists a feasible collection S
where 7; can be chosen by each subset S; : m;; > 0. The right part refers to
the non-representable types. By the criterion for representability the lower
bound for a type T; to be representable is zsie&mij>1(mij -1) = |T;] - 1.
We observe that the difference from this bound corresponds to the number

31

of subsets S; € S : m;; > 0, not choosing r;. []

Following we present an algorithm and briefly explain a polynomial algorithm
for having a type of vertices rep-wise chosen.

Algorithm 2: (repWise) Having a type of vertices rep-wise chosen.
Result: Given a SU-SID instance with a type T and a specifications
matrix M, it return a collection of subsets S; where T} is
rep-wise chosen.

1 counter, pointer « (

2 listVert « list[T; \ {r;}]

3 allPlaced « False

4 nOReij « |S| - |7—Yj| + ZSieS:mij>1(mij - 1) +1

5 for S; € S :my; > 0 with decreasing order (w.r.t m;;) do

6 if counter < noReps; then

7 S; e 1

8 counter « counter + 1

9 if allPlaced is True then
10 ‘ pointer « 0

11 while |5;| < m;; do

12 u « listVert[pointer]

13 S; < S;Uu

14 if pointer = |T;| — 2 then
15 allPlaced « True

16 pointer « 0

17 else

18 ‘ pointer « pointer + 1

19 return S;

Algorithm Explanation

e In line 1 — 4, the initialization takes place. C'ounter indicates the number
of subsets that have chosen a representative at each step. Pointer shows at
each step which vertex has to be chosen by the subset. listVert a list of
vertices including all w € T; \ {r;}. allPlaced is a flag which will be True
when each vertex u € Tj has been chosen at least once. Finally, noReps;
represents the number of subsets that will choose a representative, obtained
from Corollary 5.1.

e In line 5, we proceed by choosing vertices for each subset S; one by one in
a decreasing order, with respect to m;;, in line 6.

e Lines 6 — &, represent that exactly noReps; subsets will choose as a first
vertex the representative 7.

32

e At some point, each vertex u € T, will be chosen by one subset. Then
pointer will indicate that vertices should be chosen from the beginning. This
is shown in lines 9 — 10.

o Afterwards, in lines 11 — 18, vertices are added one by one until each S;
is satisfied. More specifically, in lines 12 — 13, vertex u where the pointer
currently indicates, is added. If the pointer reaches the end of [list Vert, then
this means that all the vertices have been chosen and thus allPlaced becomes
True. This is shown in lines 14 — 18. We should note that his can happen
only once, and the limit is |T}| -2, as r; has not been in vertList at first place.

Lemma 5.1 (Algorithm repWise complexity)

Algorithm repWise has a O(|T;||S|) time complexity. Moreover, Applying
the algorithm to the set of types of vertices T has O(|V'||S]|) complezity.
Proof. It is easy to observe that each S; € S, in lines 5 — 18, is considered
only once in each iteration. Also, in each iteration at most |T}| vertices are
considered. So, the complexity is O(|7}||S]).

In order to rep-wise choose all types T; € T' of an instance we have to apply
the algorithm |7'| times. But since T is partition of V', each vertex u € V
will be considered only in execution of the algorithm. So, it is clear that the

complexity is O(|V||S]). O

Finding collections with representatives

Definition 5.3 (1-rep property)

In the SU-SID context we will say that a collection of subsets S, satisfying
the specification matrix M, has the 1-rep property if:

i) Each type of vertices T; € T is rep-wise chosen.

i1) Fach subset S; € S has chosen at least one representative.

So, a collection S has the I-rep property if every type is rep-wise chosen and
the representatives are chosen in such a way that each subset S; has one.
Following we give a conjecture on the existence of the 1-rep property and an
intuition on the proof.

Conjecture 5.1 (Existence of the 1-rep property)

FEach feasible SU-SID instance has the 1-rep property.

Our intuition is that the proof is made possible through the conditions for
feasibility of an instance. This is possibly done by taking the tightest in-
stances, which are closer to being infeasible and handling appropriate the
constraints. Then we can reduce any other instance to one of those tight
ones. We observe that even in the tightest instances we construct in order to

33

verify the existence of the 1-rep property there is a large number of pair-wise
transformations. Perhaps it is not possible to completely prove this conjec-
ture if the all the infeasibility conditions have not been identified before.

Following, we show a simple algorithm to find a collection S with the 1-rep
property in polynomial time.

Algorithm 3: (1-rep) Finding a collection with the I-rep property.

Result: Given a collection S* where each type T; is rep-wise chosen,
it returns a collection S with the I-rep property.
for S; € S* do
‘ reps; « {representatives € S;}
while 3 S; with |reps;| =0 do
for T; € T where m;; = 0 do
for S, € S where |reps;| > 1 do
if r; € S}, then
swap(rj, w € T; N .S;)
update(reps;), update(repsy,)

® N O kA W N -

return S

©

Algorithm FExplanation

e The algorithm starts by creating a set, denoted reps; of the representatives
already chosen by each subset S;. Afterwards, until each S; has one repre-
sentative all the other subsets with are examined.

e When a subset S}, with more than two representatives is found, vertices
are swapped. This means that S; chooses r; removing a vertex u € T; and
similarly S;. Finally, the corresponding set of representatives are updated.

Remark 5.1 (Algorithm 3 correctness)

The correctness of the algorithm follows Conjecture 5.1. There always ex-
ists a collections S having the I-rep property and there is a finite number of
possible pair-wise swaps. Since, the algorithm examines all possible pairwise
swaps, eventually, such a collection S will be found.

Lemma 5.2 (Algorithm 3 complexity)

Algorithm 1-rep has a O(|S|?|T|) time complexity.

Proof. The algorithm will iterate until each subset has more than one rep-
resentative. At each iteration, it will check every type T} one by one. For
each T; € T, it examines each subset Sy eligible for swapping, if r; inSj.

Therefore, obviously the complexity of Algorithm 1-rep is O(|S|*|T|). O

34

5.2 Algorithm presentation

Following, the approximation algorithm is presented and explained.

Algorithm 4: Approximation algorithm for solving SU-SID
Result: Given A vertex set V partitioned into a set of T" types and a

matrix of subset specifications M, it return an approximate
solution with S and G = (V, E ;).

1 for each subset T; € T' do

2 | "« repWise (M, T)

3 S« 1-rep (S°, M, T)

4 Eout « ®7 Ereps — @2

5 for each subset S; € S do

6

7

8

9

head; < one representative r; € S;
for each vertexr u € S; do

T, « T[u]
if r, € S; then
10 ‘ Eout — Eout U (U,T’z)
11 else if r; ¢ S, then
12 ‘ E,i: < E,; U (u,head;)

13 Sreduced < TeduceSubsets(S)
14 Ereps - S]D(Sreduced)
15 Eapp « out U Ereps

16 return G = (V, E,,,) , S

Algorithm FExplanation

e In line 1 -3, Algorithm repWise is applied for each type T} € 7' resulting in
a collection S* with rep-wise chosen types. Then, Algorithm 1-rep is applied
on S* yielding a collection S with the I-rep property.

e In lines 5 — 12, the set of edges FE,,,; is created which includes all edges of
the solution of which exactly one endpoint vertex is a representative. Since S
has the 1-rep property, each subset S; € S contains at least 1 representative.
In line 6, one of them, denoted head;, is arbitrarily selected. Afterwards,
each vertex u € S; in the following way. In lines 9 — 10, if the representative
of the type of u, denoted r,, is part of the subset, then the edge (u,r,) is
added. If r, ¢ S; vertex u is connected to the head of that subset (u, head;),
as seen in lines 11 — 12.

e In line 13, a reduced, S,equced, 1S created. Each subset in S,.4,ceq Originates
from a subset corresponding in S but for which only the representatives are
considered and all the other vertices have been eliminated.

e In line 14, the SID problem is solved for S,.q,ccq ON a vertex set considering
only representatives. At this point the SID problem can be solved either ex-

35

actly or by using the greedy algorithm presented in textcolorredREF!. In any
case a set of edges E,.,s with edges between the representatives is generated.
e Finally, graph G = (V, E,,; U E,,s) and a collection S is returned.

An example

Suppose we have the following instance.

M, =[1,1,0] T4 Ts 92 U3
My=[0,1,1]| [V=RUGUB ;

My =1[2,0,1] R ={ry,ry,r5,74,75} ! 7l
M, =[1,2,1] G = {91, 92 93, 91} 3 T2

M; =1[1,2,0] B = {by,by} b b

Mg =1[3,1,0] y V9

Figure 17: An instance of SU-SID with |V| = 12,|S| =6, |T| = 3.

By line 4, a collection S with the 1-rep property will be generated, as illus-
trated below. As representatives, r1, g; and by, have been arbitrarily selected.
And the corresponding heads selected in line 6 are underlined below.

S = {5175’2733754as5756}
Sy = {ﬂ7 94} Sy = {917[)_1} S3 = {ﬂ> T4, ba}
Sy = {7“179_17 92,1} S5 = {7“57&7 93} Se = {7“1,7’277“379_1}

In Figure 18, the edge set E,,; is created according to lines 5 — 12 of the
Algorithm. On the left side, is the case where r, is present in the subset,
lines 9 — 11, and edges between vertices of the same type are added. On the
right side, is the case where r, € .9;, lines 12—13, and edges between different
types and exactly one endpoint is a representative are added.

36

s 92 g3 Ts 92 g3

T4 94 Ty g4

s/ @ . 9
B

] T2

Figure 18: Illustration of the steps of the algorithm need to create E,,;.

At this point, the reduceSubsets algorithm is applied on the collection S, as
explained above. The following subsets are obtained:

Sy = {7"1} Sy = {91751} Sy = {7‘1}
Sy = {7"1791,51} Sy = {91} S = {7'1a91}

originating from subsets Sy, .9,, and Sg respectively.

7"5\\ Ts g2 g3

T4 T4 9a
// //

T3 /,’ T3

7"2//)

Figure 19: Edge set,E,.,s, created by solving SID and a final solution.

On the left side of Figure 19 the edge set E,.,s is illustrated, which is ob-
tained by solving the SID on S, 4.ccq and the representatives. Finally, on the
right side of the figure the edge set of the solution E,,, which is a union of
the two previous edge sets is illustrated. This concludes the illustration of
Algorithm 4, for the instance of Figure 17.

37

5.3 Algorithm analysis
Correctness and Complexity

Proposition 5.1: (Approximation algorithm correctness)

Algorithm 4 for SU-SID yields always a feasible solution.

Proof. To prove the correctness Algorithm 4, we have to show that the con-
straints posed in Definition 2.2 are not violated.

i) Fach subset S; satisfies the corresponding vector M;. This is obviously
true by the definition of the 1-rep property.

iv) Graph G is connected. This is because by the time E,,; is created, all the
vertices are connected to some representative. So, at this point there exist
|T| connected components. Later on, when SID is solved these |T'| compo-
nents are connected. Otherwise, the solution to SID would not be feasible.
v) Each edge e € E contributes to at least 1 subset. For the edges e € E,,,
it is true because they connect each vertex to a representative. Thus, they
contribute to at least one subset. For the E,.,, edges SID problem is solved.
If an edge e € £, did not contribute to any subsets, such an edge would
not be yielded from solving SID.

ii) Fach induced subgraph G[S;] is connected. For each S; € S, the chosen
vertices have a direct edge to a representative chosen by that subset. Also
from I-rep property each S; has chosen at least one representative. So, it
remains to prove that the representatives chosen by S; are connected. This
is obvious, as SID is solved between the representatives. [

Lemma 5.3 (Approximation algorithm complexity)

Algorithm 4 has a O(|S||V| + |SIP|T| + |S||T|? + |T|") time complexity.
Proof. Algorithm repWise ¥ T; € T, from Lemma 5.1 has O(|V||S]) com-
plexity. Algorithm 1-rep has O(|S|?|T|) complexity, from Lemma 5.2. For
the creation of E,,, in lines 5 — 12 each subset S; each considered and
then for each subset every vertex u € S; is considered. So, it requires
O(|V]|S|) time complexity. Reduction of subsets has also a O(|V||S]) time
complexity. Finally, for solving SID on the representatives, there exists a
o(T|* + |S|IT)?) greedy algorithm [19]. Summing up, the dominating of
these four values will define the time complexity. Therefore, it results in a
O(S||V] + |SIPIT] + |S||IT)? + |T|*) time complexity. [J

Lemma 5.4 (Size of solutions)

A solution from Algorithm 4 is bounded by |E,,,| < W + V| = |T|
Proof. Every vertex u € V apart from the representatives neighbours with
exactly one representative. So we have |V| — |T| edges. Between the rep-

38

resentatives there can exist at most W edges, when the complete
graph K\ is formed. So, in total, an edge set E,,, is bounded by |E,,,| <

D
|T|x(|T|-1) + |V| _ |T| 0
5 .

Approximation ratio

Proposition 5.2: (Algorithm 4 approximation ratio)

T2

Algorithm 4 is a A-approximation algorithm for SU-SID, with A = % + 1)
Proof. To find the approximation ratio we have to compare the size of a cal-
culated solution with that of an optimal solution. Any feasible solution is
lower bounded by |V| = 1, thus, Egopr = |V| — 1. From Lemma 5.4, a solu-
tion is bounded by |E,,,| < mj'_l) + |V| = |T|. We deduce that in the
worst case an optimal solution is |Eppr| = |V| = 1 and the algorithm yields
a solution with |E,,,| = EXUI=D 4y — 7).

_ Byl _ITIx(TI-1) 1 T =3[+2V| _

\ = = =
| Eopr| 2 V-1 2|V| -2

Regardless of the ratio between |V| and |T'| terms (=3|T|) and (-2) are
dominated as |V| and |T'| grow , so we proceed as follows.

| Eopy] 1T+ 2|V| T|?
A= =0 ——— |=0|—=+1]|0O
| Eopr| 2|1V| 2|V|

We observe that the performance of the algorithm depends on the number
of types. If |T| = O(1) or |T| = O(y/]V]), then the approximation ratio is
constant, with A = O(1). So, when we have a average or high uncertainty,
Algorithm 4 is proved to perform well. On the other hand, if we have low
uncertainty, |T| = O(V'), then Algorithm 4 can potentially yield far from
optimal solutions, having a O(|V|) approximation ratio.

Proposition 5.3:

Algorithm 4 returns and optimal solution when |T| = 2.

Proof. A complete graph on 2 vertices has only 1 edge. Therefore, from
Lemma 5.4, |E,,,| = |V| = 1. The solution will always be optimal, being a
tree, matching the results of Corollary 3.1. [J

39

Other results

Proposition 5.4: (Reduction of subsets)

Reducing a collection S can improve the size of the solution only if the in-
stance is not representable.

Proof. If the instance is representable, it means that the respective represen-
tatives will be chosen by each subset S; : m;j > 0, VT; € T. This means
that for the collections will hold that |S,equced| = |S|. Moreover, no pairwise
relation between any types will be reduced. This will end up, in no improve-
ment for the size of the solution, as all constraints between types will be
preserved, when solving SID between the representatives. [

We deduce from the above, that we expect Algorithm 4 to behave better
when instances are not representable. Moreover, the more types T; € T of
an instance are not representable the better results we can expect.

Proposition 5.5:

An optimal solution to SID between representatives, does not ensure opti-
mality of solution to SU-SID.

Proof. We prove this, by giving a counter-example, illustrated below.

Ml = [07172] b2
M; =11,2,0]
M3 = [17071] '
M4 = [2)172] bl

/ N\

V=T,Ul,uT, aq &1

Ty ={ai,as,} \

Ty = {b1,ba} 75 Ca
T, = {c1,c2}

Figure 20: A SU-SID instance, as a counter-example for Proposition 5.5.

On the left side of Figure 20, an optimal solution is illustrated, with size
| E,pe| = 5. On the right side, a solution by Algorithm 4 can be seen, with
size |E,,,| = 6. SID between the representatives is solved optimally, but
despite that fact, | Eyp,| 2 |E,y|. Thus, the proposition holds. [

So, although solving SID between the representatives is N'P — hard, solving
it optimally does not guarantee optimality for the SU-SID instance. Never-

theless, it gives the best possible solution this algorithm could yield.

40

6 LP-based heuristics

So far, we have presented an MILP formulation that solves the problem to
optimality. Unfortunately, since we showed that SU-SID is NP — hard,
we do not expect MILP to be appropriate for large instances. This claim
becomes obvious in the next section where we present some experimental
results. Moreover, previously we presented an approximation algorithm, the
ratio of which depends on |T'| and |V|. So, there can exist instances with
bad performance.

In this section, we approach the problem in a heuristic manner. Ideally,
those algorithms should provide good solutions in polynomial time, without
guarantees on the size of the solution. Both of the algorithms presented, are
based on an iterative scheme and on the LP-relaxation of the MILP model.

6.1 Iterative Rounding of edges

The first algorithm presented is based on an iterative scheme which con-
structs step by step a feasible solution. Each time a relazed version of the
problem is solved, one or more edges are selected for the solution. The algo-
rithm can be described as follows.

Algorithm 5: (iterEdge) Solving SU-SID by iteratively solving a
relaxed version and choosing edges.
Result: Given a SU-SID instance it returns a feasible solution.

1 repeat

2 S,y « solve SUSIDgprax(y)
3 for y. € y do

4 if y, =1 then

5 ‘ firy. =1

6 else if y, = 0 then

7 ‘ fixry, =0

8 if y has not changed then

9 e « weightedRandomSelection(y)
10 fir y, =1

11 until y is integral

12 return S, G = (V, E)

Algorithm FExplanation

e The algorithm iterates until a integral solution is found. Vector y is
the y. variables V e € E as presented in the MILP formulation, which are
now relaxed. At each iteration a relaxed version of the problem, denoted

41

SUSIDgrEgrax, is solved. Moreover, one or more variables vy, € y are fixed
to 1, thus, gradually constructing a feasible solution.

e All variables y,, which got an integral value, y. = 1, by solving SUSIDgrprax
are fixed to 1 for the rest of the algorithm. This means that they will be part
of the final solution. This can be seen in lines, 4 — 5.

e All variables y,., which had not even a fractional solution, y, = 0, when
solving SUSIDgrprax are fixed to 0. In this way, they will not be considered
any more when solving SUSIDgrgrax. This is represented in lines, 6 — 7.

e Finally, if no y. has been fixed to 1 during an iteration, then an fractional
edge, y. € (0, 1), is randomly selected to be fixed. The probability of an edge
e to be selected is proportional to its fractional value and all the variables in
y. This can be observed in lines, 8 — 10.

Algorithm iterEdge will iterate at most W times. This is because at
each step at least one edge is selected in the solution and a solution can have
at most |E| = W edges. In practice, we observe that the number of
iterations is smaller as in many steps a notable amount of edges are selected.

We analyse this behaviour in the experimental results section.

The correctness of Algorithm iterEdge is straightforward. This is because the
algorithm terminates only after it has an integral edge set F. A fractional
edge y, can only be rounded up. So, such a rounding can only increase the
size of F and without violating any feasibility constraint.

Notes on the algorithm

For the linear programming relaxation of any MILP, all binary variables, are
replaced by continuous ones belonging to the [0, 1] interval. This is done
in order to turn an NP — hard problem into a related one which can be
solved in polynomial time. For our problem there is a difficulty which we
were not able to tackle so far. This is the relazation of connectivity. For our
flow-based formulation there does not seem to be a way to relax all variables
and still maintain connectivity. So, when we refer to SUSTDggpax, it is
actually a partially relazed version where all but one, s,,, binary variables are
relazed. More specifically: ' '

Constraints: y. € {0,1}, y. € {0,1} and =z, € {0,1}

Become: 0<y.<1, O0<y.<land 0<z <1

We must note that SUSIDgprax is therefore not an LP, thus not being

polynomial. Nevertheless, it is an MILP which is much less complezr related
to the initial MILP model.

42

This algorithm is a heuristic, without any guarantees on performance. We
must not rule out the possibility that with proper analysis and adaptation we
could devise an approximation algorithm. Such seemingly similar methods,
of iteratively solving relazed problems, are described in [17] and could be of
potential use.

Also another important direction for improvement is to formulate differently
our problem, in order to tackle the connectivity issue, when relazing the
MILP. In such a way we could prove Algorithm iterEdge to be polynomial.
So, the algorithm would be able to solve larger instances.

6.2 Iterative Rounding of vertices

The second algorithm presented is a 2-stage algorithm. The main idea con-
sists of finding, in the first stage, a collection of subsets S, which will later
yield a good solution. To find the collection S, a relazed version of the MILP
is solved iteratively. This is done until the specification matrix M is satisfied.
On the second stage, the SUBSET INTERCONNECTION DESIGN is solved on
S returning a feasible solution for the initial SU-SID instance.

Algorithm 6: (iterVertex) Solving SU-SID by iteratively solving a
relaxed version to find S, and then solving SID.
Result: Given a SU-SID instance it returns a feasible solution.

repeat
S, z « solve SUSIDgrgrax(z)

=

2
3 for Z; € z do

4 if zi =1 then

5 ‘ fix zZ =1

6 if z has not changed then

7 (S;,u) « weightedRandomSelection(z)
8 fix z; =1

9 until z is integral
10 E « SID(S)
11 return S, G = (V, E)

Algorithm FExplanation

e The first stage is explained in lines 1 — 10 and consists of finding a feasible
collection of subsets S. It iterates until each S; € S has integral values.
Matrix z is the z, variables V S; € S,V u € V as presented in the MILP
formulation, which are now relazed. As before, in each iteration a relazed

43

version of the problem, denoted SUSIDgpgax, is solved.

e If a variable z,, has an integral value, z, = 1, by solving SUSIDggrax,
is then fixed to 1 for the rest of the algorithm. This means that vertex w is
chosen by subset S;, gradually satisfying the specifcations matrix M. This
is seen in lines, 4 — 5.

e If no 2, has been fixed to 1 during an iteration, then a fractional edge,
ye € (0,1), is randomly selected to be fixed. The probability of being chosen
is proportional to its fractional value and the remaining variables in z. This
is observed in lines, 6 — 8

e The first stage of the algorithm yields a collection S by the end of line
9. So, since there is no uncertainty, the SID problem can be now solved on
S. This can be done in any possible way, either optimally, using an MILP
formulation [2], or approximately using a greedy algorithm [4,19].

For the first stage of Algorithm iterVertex there will be at most |V - |S]|
iterations. This is because at each step at least one vertex will be chosen
by a subset. In practice thought, as previously, the number of iterations is
much smaller. More details can be seen in the experimental analysis.

Algorithm iterEdge always yields a feasible solution. At the end of the first
stage there exists an integral composition of subsets which will be feasible.
Collection S satisfies M. So, by solving SID we can be sure that a feasible
solution for S will be a feasible solution for SUSID, as well.

Notes on the algorithm

The core idea of this algorithm is to turn a highly complex NP — hard prob-
lem, as SU-SID, into another NP — hard problem, as SID, in order to use
the existing results. So, ideally with an extra time complexity we could ob-
tain a collection S where we could apply the existing techniques for SID.
Although, until now, the aforementioned problem of relazing the connectiv-
ity prevents Algorithm iterVerter from being polynomial.

In any case, this 2-stage concept can be very important for devising improved
algorithms. On one direction, it could be possible to examine how bad could
a solution be when a bad collection S was found with some method. So
by examining it, one could afterwards solve the problem greedily, adding an
extra factor to the existing approximation ratio [4] and thus yielding an ap-
proximation algorithm for SU-SID. On the other hand, one other approach
would be to find on the first stage a collections S satisfying M with specific
structure, as in [14,15,16]. Then, on the second stage, such SID instances
could be solved polynomially to optimality.

44

7 Experimental results

In this section we analyse the results obtained by undertaking a series of
experiments on different types of SU-SID instances. The experiments are
done with all four proposed methods. The main goal of these experiments,
is to have a clear view of the complexity of the problem in practice and to
practically evaluate the performance of all algorithms. By doing so, we are
in place to see the limitations of each method and to propose the most ap-
propriate for different categories of instances. Also, it is possible to study
the size and the structure of the solutions yielded by each algorithm. This
gives perspectives for further improvement.

The experiments were undertaken using the following tools and technologies.
— Sagemath|[22], open-source mathematics software system, GPL licensed.
— Python, programming language.

— CPLEX, optimization software package (solver), provided by IBM.

We start by presenting some results and explaining them accordingly. Fol-
lowing, we compare all the algorithms together giving suggestions for the
appropriateness of each regarding to different types of instances.

7.1 Experimental results

For the instances we have used a random generator to create them. More
details on the generation of the instances are provided in the Appendix. We
have conducted the experiments on 15 different instances. The range on the
number of vertices is |V| € {10,15,25,40,60}. And the number of types
for each V is roughly |T| = O(VV), (’)(%) and O(V'). So, we have chosen
to experiment on average to high uncertainty. For the number of subsets
we have |S| = |V|. We must note that |S| highly influences the runtime
of all non-polynomial algorithms. For all experiments we have considered a
plausible time limit of ¢ = 1200sec.

The results presented are partial, showing 8 out of 15 instances. The full
results can be seen in Tables 3 and 4 of the Appendix.

Mixed Integer Linear Program

In left part of Table 1, the results of the MILP execution are reported. Value
Opt.Gap. refers to the optimality gap given by the solver if it did not manage
to find an optimal solution, by the end of time limit ¢. It can be defined as

45

the ratio between the best found integer solution, sol, over the best known
) = (lbound
lower bound, at least |V| — 1, as: Opt.Gap. = (so0l) = (Iboun)%.
(Ibound)
We observe that the MILP can be solved to optimality up to a threshold of
almost 15 — 20 vertices. A solution with a relatively small optimality gap.
can be computed up to a threshold of almost 30 — 40 vertices. After that
threshold the optimality gap grows so much that the solutions provided are
not of particular use.

MILP APRXy1Lp APRXGreedy
Instance |E| Time Opt.Gap || |[E| Time Opt.Gap | |E| Time H
VI=10,]T[=5 | 10 1 0.00% | 11 1 0.00% | 11 1
VI=15[T[=4 | 14 3 0.00% || 16 1 0.00% | 16 1
V[=15[T| =7 | 15 2 0.00% | 16 2 0.00% | 16 1
VI=25[T[=5 || 25 1200 4.00% | 28 1 0.00% | 28 1
[V[=25|T| =12 | 30 1200 20.00% | 34 2 0.00% | 35 1
[V[=40,[T[=6 || 46 1200 15.22% | 41 1 0.00% | 42 1
[V[=40,[T| =18 | 131 1200 _ 70.23% | 55 1200 17.35% | 55 1
[V[=60,[T| =25 || 218 1200 72.04% | 94 1200 19.15% | 97 1

Table 1: Partial experimental results for MILP and approximation algorithm.

Approximation algorithm

Regarding the approximation algorithm we have experimented with two dif-
ferent versions. The difference is in the way SID is solved between the
representatives. For both the existing methods in [2] were used. The first
one, denoted APRX ;rr.p, uses the MILP, solving it to optimality. We also
observe here the Opt. Gap. when the MILP does not finish in time. We must
note that this gap refers to the optimal solution between the representatives
which can be different as shown in Proposition 5.5. The second, denoted
APRX Greeqy, uses a Greedy algorithm to solve SID. The results can be seen
on the right part of Table 1.

It is notable that APRX¢yeeqy has always a runtime of 1 sec. If |T'] is
small and the MILP between the representatives finds an optimal or near
optimal solution, then APRX ;. p yields a better solution. That difference
between Greedy and MILP is roughly up to 3 vertices. We expect that
for large instances and a large |T'| the MILP will no longer be able to find
feasible solutions. Otherwise the solutions will have a bad ratio, therefore
APRX Greeqy Will for sure provide better results.

46

Heuristics

Following the results from the two different heuristics are presented. For
algorithm iterVert we also have two approaches for the second stage of the
algorithm. In iterVerty;p, SID is solved to optimality. As previously, we
must note that the Opt.Gap. can differ from the real one. It refers to the
optimality gap for the specific collection that was found in the first stage.
Similarly, in iterVertgyecay, SID is solved in a greedy manner. The results
can be seen in Table 2. When there is the NO value, it means that the
algorithm did not manage to terminate in time and find a feasible solution.

iterEdge iterVertgreedy iterVertyrp

Instance |E| Time || |E| Time |E| Time Opt.Gap
[V =10,|T| =5 12 2 11 2 11 2(2) 0.00%
[V[=15,[T| =4 17 6 14 14 15 114(14) 0.00%
[V =15,|T| =7 18 5 18 10 18 10(9) 0.00%
[V =25|T| =5 28 28 28 118 29 122(121) 0.00%
V| =25|T| =12 38 34 35 86 36 144(80) 0.00%
[V =40,|T| =6 52 441 49 1107 51 1200(1155) 22.67%
V| =40,|T| =18 66 280 59 465 58 1200 17.35%
[V|=60,|T| =25 115 1044 || NO 1200 NO 1200 -

Table 2: Partial experimental results for the heuristics iterFEdge and iterVert

The value in parentheses in iterVert, . p refers to the time the execution re-
quired for iteratively solving the relaxed versions. This is, obviously, the same
value for iterVertgeeaqy. Algorithm iterVert seems to be yielding slightly
better results than iterEdge but it seems to be scaling a little less, as |V|
increases. Finally, in Table 4 of the Appendix, the number of iterations the
relaxed version was solved for each instance is denoted by value #iter.

7.2 Comparison of algorithms

As expected, solving the problem to optimality using MILP has its limita-
tions. SU-SID is highly complex and these limitations are observed even
when there is small number of vertices. So, depending on the instance, and
the time limit given we expect to get good results for up to a threshold of
roughly |V| = 40.

The approximation algorithm has a very good behaviour in practice. We
observe that when MILP reaches its limitations it is the best possible ap-
proach. Notably, even when MILP yields the best solution, the difference in
the size observed is up to 4 edges. Another important observation is the fact

47

that even when there is a big number of types |T'| = O(]|V]), we obtain very
good results. So, apart from theory the approximation algorithm behaves
very good even in practice.

Regarding iterFEdge algorithm, we observe that it scales up to a threshold
of |V| = 60 with the given time limit. The results obtained can sometimes
be close to the optimal and some times far from it. Nevertheless, at the
point when the MILP stops yielding good results there is an interval where
iterEdge behaves better. This is until algorithm iterEdge itself stops scaling.
For algorithm iterVert we observe that it is yielding slightly better solutions
compared to iterFEdge. It is competitive with MILP, when it stops scaling
but it has strong limitation itself. We observe that most of the time of the
execution is required to find the collection S. Although the relaxed version
is solved few times compared to |V| it still requires a lot of time.

Execution time (limit = 1200 sec.) SIZE OF THE OPTIMAL SOLUTION
1200 —4—MILP = APRX_(Gr) APRX_(ILP) iterEdge emMmmiterVert_(Gr) —@=—iterVert_(ILP)
1000 200

800

600

400 APRX_(Gr)

200

50
0 B ML
T S T T A Bt O S~ . A S AN MILP APRX
AR A Q‘?} & d,? (\’7} & @?’ \@?’ & \@:\’ \@f’ itervert itervert

MILP

—&— MILP —8— APRX_(Gr) APRX_(ILP) iterEdge —@—iterVert_(Gr) —@—iterVert_(ILP) o]’Vgl'“;

Figure 21: Charts of size of the solution and execution time of experiments.

We summarize this section by highlighting the following observations.
o Solving the problem to optimality with MILP has limitations which are
reached relatively fast.
o The approximation algorithm behaves very good in practice and almost
optimally when |T'| is small.
o The heuristics proposed, do not behave better than the approximation
algorithm in general. Nevertheless, they are competitive to the MILP and
there is a room for improvement, to make them scale better, each of them in
a different direction.
For the 2-stage concept of iterVert, a good collection S could be found
much faster. Even if that would require completely changing the idea of
iteratively solving the relazed version.
For iterEdge a different formulation could be used as mentioned previously.
This would allow the algorithm to behave much better in practice.

48

8 Conclusions

8.1 Summary

In this report we defined and studied the SUBSET INTERCONNECTION DE-
SIGN problem with SUBSET UNCERTAINTY which has not been addressed
before. In the first section, we started by presenting the current work and
results on SID, some of which are used and others extended in the cur-
rent work. In the next section, we defined and explained SU-SID and its
motivations. We also considered its hardness, showing it is an NP — hard
problem being a generalization of SID. In the third section, we made an
in-depth analysis on the problem, acquiring a tight upper bound for optimal
solutions. We then presented various other results and gave directions for
further work on identifying cycles in the solution. In the following section,
we presented a Mixed Integer Linear Programming formulation which solves
the problem to optimality. Alongside, several variations and extensions to
the model were given. In the fifth section, we proposed a polynomial time
algoritth. We analysed its complexity, its approximation ratio, showing it
is (% + 1), and some other properties. Next section, engaged in the devise
of heuristic of efficiently solving the problem. Both heuristics presented are
based on the LP-relaxzation of the MILP model and on an iterative scheme.
After analysing them, we gave guidelines for potential improvement in future
work. Finally, the experiments undertaken on different instances were pre-
sented. All methods studied in the report were considered in the experiments
and their behaviour is analysed, giving suggestions for their use.

More specifically, in the context of the internship, the work undertaken, in
close cooperation with my supervisors, and the respective contribution, can
be summarised in the following milestones.

o Studied the existing framework for SID, results of which were later used.
o Formally defined SUBSET UNCERTAINTY-SID and studied its complexity.
o Thoroughly analysed SU-SID, giving among other results, a tight upper
bound for the size of the solution.

o Modelled the problem with MILP, solving the problem to optimality.

o Gave an approximation algorithm for the problem and analysed it.

o Devised two different heuristics, based on LP-relazation and SID problem.
o Implemented all proposed methods in Python.

o Experimented on various instances, with all algorithms, studying their be-
haviour in practice.

o Gave various directions for further work on various directions (right after).

49

8.2 Further work

As mentioned, SUBSET INTERCONNECTION DESIGN WITH SUBSET UNCER-
TAINTY has not been addressed before. Therefore, there many possible direc-
tions to follow for further work, some of which have already been proposed
within the respective sections. The core idea is to tackle the high complexity
of the SU-SID and be able to find good solution in a plausible time.

The first main direction, is in analysing the problem and the structure of the
solutions. It would be very important if some more solid results regarding
cycles in the solution were found. So, we would like to find out under which
conditions such cycles exist and how we can identify them efficiently
Regarding the MILP formulation there is also room for improvement. It re-
mains open if there exists another formulation, which can be relaxed without
affecting the connectivity, which seems to be the case now. Also an integra-
tion of any other theoretical results about the structure of the solution could
provide effective cuts reducing the search space.

On the design of approximation algorithms there are two straightforward
directions that have already been mentioned. One is to adapt the iterative
scheme with LP-relaxation in such a way that, an appropriate analysis can
yield an approximation algorithm. On the other hand, finding a collection
from the relaxation and solving with a 2-stage scheme could also give guar-
antees on the size of the solution.

We know that there exist categories of SID instances that can be solved
in polynomial time. Constructing collections that satisfy the corresponding
specification matrices and fall into one of these categories would be of in-
terest. That would not guarantee optimality in total, but optimality in the
SID part. What would then be the difference from an optimal solution for
SU-SID is the question that follows.

Closing, two questions come up. Firstly, we know that in the context of Struc-
tural Biology there exists some specific structure between different proteins-
vertices. It would be compelling to see if this could possibly be exploited.
Also, we have seen that is already difficult to find one good, if not optimal
feasible solution. How we could possibly produce a set of such good solutions
seems intriguing. Finally, it would be of importance to associate SU-SID
with other well-studied problems and find useful results and applications.

50

Bibliography

[1] F. ABUALI, R. WAINWRIGHT AND D. SCHOENENFELD. Solving the
subset interconnection design problem using genetic algorithms. In Proc. of
the ACM Symposium on Applied Computing, 1996.

[2] D. AGarRwAL, J. Arauzo, C. CAILLOUET, F. CazaLs, D. Coubp-
ERT AND S.PERENNES. Connectivity inference in mass spectrometry based
structure determination. European Symposium on Algorithms (ESA), 2013.
[3] D. AcARWAL, C. CAILLOUET, D. COUDERT AND F. CAzALS. Unveiling
contacts within macro-molecular assemblies by solving minimum weight con-
nectivity inference problems. Molecular and Cellular Proteomics In, 2015.
[4] D. ANGLUIN, J. ASPNES AND L. REYZIN. Inferring social networks
from outbreaks. Proc. of the 21st International Conference on Algorithmic
Learning Theory (ALT), 2010.

[5] C. CHEN, H. JACOBSEN AND R. VITENBERG. Algorithms based on
divide and conquer for topic-based publish/subscribe overlay design. Net-
working, IEEE/ACM Transactions on, 2014.

[6] J. CHEN, C. KOMUSIEWICZ, R. NIEDERMEIER, M. SORGE, O. SUCHY
AND M. WELLER. Polynomial-time data reduction for the subset intercon-
nection design problem. SIAM Journal on Discrete Mathematics, 2015.

[7] G. CHOKLER, R. MELAMED, Y. Tock AND R. VITENBERG. Con-
structing scalable overlay network for pub-sub with many topics. In Proc.
of the ACM Symposium of Distributed Computing (PODC), 2007.

[8] D.-Z. Du. An optimization problem on graphs. Journal Discrete Applied
Mathematics (JDAM), 1986.

[9] D.-Z. Du anD D.F. KELLEY. On complexity of subset interconnection
designs. Journal of Global Optimization, 1995.

[10] D.-Z. DU AND Z. MILLER. Matroids and subset interconnection design.
SIAM Journal on Discrete Mathematics (SIDMA), 1988.

[11] H. FAN AND Y.-L. Wu. Interconnection graph problem. Proc. of In-
ternational Conference of Foundations of Computer Science, 2008.

[12] H. FaN, C. HunDT, Y.-L. WU AND J.ERNST. Algorithms and imple-
mentation for interconnection graph problem. International Conference on
Combinatorial Optimization and Applications (COCOA), 2008.

[13] J. Hosopa, J. HroMmKoOvIC, T. Izumi, H. ONO, M. STEINOVA AND
K. WADA. On the approximability and hardness of minimum topic con-
nected overlay and its special instances. Theoretical Computer Science, 2012.
[14] E. KORACH AND M. STERN. The clustering matroid and the optimal
clustering tree. Mathematical Programming, 2003.

[15] E. KORACH AND M. STERN. The complete optimal stars-clustering-
tree problem. Journal Discrete Applied Mathematics (JDAM), 2008.

[16] E. KORACH AND M. STERN. On a clustering problem in the industry.
(http:/ /www.researchgate.net/publication/238430641_-ON_A_CLUSTERING-
PROBLEM_IN_THE_INDUSTRY), 2008.

[17] L. Cur Lau, R. RAvI AND M. SINGH. Iterative methods in combina-
torial optimization. Cambridge University Press, 2011.

[18] T. NorRONHA, C. RIBEIRO AND A. SANTOS. Solving diameter con-
strained minimum spanning tree problem by constraint programming. Inter-
national Transactions in Operational Research, 2010.

[19] E. PRISNER. Two algorithms for the subsets interconnection design
problem. Networks, 1992.

[20] M. SHARON AND C. ROBINSON. The role of mass spectrometry in
structure elucidations of dynamic protein complexes. Annual Review of Bio-
chemustry 76, 2007.

[21] T. TAVERNER, J. HERNANDEZ, M. SHARON, R. RuoTOLO, D. MATAK-
Vinkovic, D. DEvos, R. RUSSEL AND C. ROBINSON. Subunit architec-
ture of intact protein complexes from mass spectrometry and homology mod-
elling. Accounts of Chemical Research 41, 2008.

[22] THE SAGE DEVELOPERS. Sage Mathematics software.
(hitp://www.sagemath.org).

Appendix

Figures 22 and 23 illustrate the different structure of the solutions obtained
for the instance with |V | = 15,|T| = 7, by the four different algorithms.

Figure 23: Solution obtained from iterVert (left) and iterEdge (right).

"SWJLILSO[R 149/ .499% PUR 9HPF4271 TIOIJ PAUTRIO SYNSAI [RyuoWLIDdXG] f S[qR],

- - 0021 ON 0021 ON - 0021 ON ||| 09 = [.z] ‘09 = | A]
- - 0021 ON 00G1 ON OIT ¥%0T SIT ||| g = 1] ‘09 = | A|
- - 0021 ON 0021 ON 96 865 6L L=1rl'09=|Al
6 %Le9T (8¢2)00ZT LL 092 78 66 o 66 ||| €¢ = |zl‘oy = |A]
61 %L97c (9€5)00Z1 6 GOy 86 09 08¢ 99 || 81 =|zl|‘0v =|Al
e %019 (SSTT)00ZT 6F LOTT IS ey Wy TS 9=|rl0v =|Al
L %L8FT (FP)O0TI S Gy 9¢ 67 99 g8 || 0z =|r|‘ce =|Al
9! %00°0 (08)¥¥1 cg 98 9¢ 14 Ve 8¢ || g1 = |z|‘sg = |A|
z1 %000 (te1)zel 8¢ 8TT 62 ze 8¢ 8C ¢ =|1l‘ee = |Al
4 %00°0 (¥)6 & 4 Gz e € ¢¢ || e1=|zl'c1=]A]
9 %000 (6)ot1 81 01 8T 01 g 8T L=|rle1 =14l
L %000 (FO)FIT il il 9 1 9 LT v =|zl‘s1 = |Al
¢ %00°0 (e 1T e T 01 e 4 8 = |z| ‘01 = |Al
¢ %00°0 (De 11 4 11 8 G 4! ¢=|z1]‘o1 =|A|
i %00°0 (2)e 01 e 0T i I 0T ¢=|zl'or = Al
“TOYIFH deny1dp ouwILT, || o, || PNH# ewl, |H| aoue)suy
YIS A JOL dTINYI9A J091 ApooID 19 A 3091 °3pH 991

"SWILIISO[R ©0YpUToLddy, pue J77f WOl pourejqo sjmnsol [ejuowodxs ¢ o[qe],

%ER'6E 00Z1 LGT I PRI || %P0°09 00z1 902 ||| 0¢ = |.z| ‘09 = |A|
%ST'61 0021 %6 I 16 %F6'c. 00z1 81T || sz = |.z]‘09 = | Al
%00°0 T 69 T 0L %0709 00zT 6%T || L=1[rzl‘09=]A]
%8T'8T 0021 8L I 08 %e¥e 00zl 8L || €¢ = |z|‘0v = |A]
%GeLT 0021 GS T 86 %ez 0L 00zl 1gl ||| 81 = |.Ll‘ov = |A]
%000 I 134 T oy %ZTST 0021 9F 9 =[r]l‘'ov = |A]
%8ZFT 0021 G¢ I Lg %59°1¢ 0021 %€ ||| 0z = |.Z| ‘st = |A]
%000 e Ve I G %000z 00z1 0€ || g1 =|1] ‘sz =|A]
%000 1 8¢ I 8% %00’ 0021 ST ¢ =[r]|'etc =|Al
%000 e 4 I e %000 14 0z ||| o1 =|r1]‘ct = |A|
%00°0 1 91 I 91 %000 4 ST L=|rIlct = Al
%00°0 I 91 I 91 %00°0 ¢ 4! ¥ = || ‘st = |A]
%00°0 1 1T i 11 %00°0 I 11 8 = |.I] ‘01 = |A]
%00°0 I 1T I 1T %00°0 I 0T ¢ =[]0t =|A|
%000 1 01 T 01 %000 1 6 ¢=|zl‘o1 =|A]
denyndp eury, |F]| owIL, || denyadpy ewry 4| aoue)suy
dTINY qJV APRIDY AV dTIN

	Subset Interconnection Design
	Description of the problem
	Related work

	Introducing Subset Uncertainty
	Description of the problem
	Complexity

	Problem analysis
	Bounding solutions from above
	Feasibility, cycles and others

	MILP formulation
	The model
	Observations and additional formulations

	An approximation algorithm
	Preliminary definitions
	Algorithm presentation
	Algorithm analysis

	LP-based heuristics
	Iterative Rounding of edges
	Iterative Rounding of vertices

	Experimental results
	Experimental results
	Comparison of algorithms

	Conclusions
	Summary
	Further work

