The Voronoi Diagram of Rotating Rays with applications to Floodlight Illumination

Ioannis Mantas²

Carlos Alegría¹ Evanthia Papadopoulou² Marko Savić³ Hendrik Schrezenmaier⁴ Carlos Seara⁵ Martin Suderland²

- 1. Università Roma Tre, Rome, Italy
- 2. Università della Svizzera italiana, Lugano, Switzerland
- 3. University of Novi Sad, Novi Sad, Serbia
- 4. Technische Universität Berlin, Berlin, Germany
- 5. Universitat Politècnica de Catalunya, Barcelona, Spain

EuroCG 2021

Saint Petersburg, Russia

Table of Contents

Introduction

RVD Definitions & Properties

RVD in the Plane

RVD of a Convex Polygor

$\alpha\text{-floodlight}$

Input: Polygon P with edge-aligned α -floodlights

lpha-floodlight

Input: Polygon P with edge-aligned α -floodlights

lpha-floodlight

 α -floodlight

Input: Polygon P with edge-aligned α -floodlights

Goal: Minimum angle α^* to illuminate P

 α -floodlight

Input: Polygon P with edge-aligned α -floodlights

Goal: Minimum angle α^* to illuminate P

Brocard illumination problem

Input: Polygon P with edge-aligned α -floodlights

Goal: Minimum angle α^* to illuminate P

α -floodlight

Brocard illumination problem

Input: Polygon P with edge-aligned α -floodlights

Goal: Minimum angle α^* to illuminate P

α -floodlight

Input: Polygon P with edge-aligned α -floodlights.

Goal: Minimum angle α^* to illuminate P.

Approach: Define the Voronoi Diagram of Rotating Rays.

Brocard Polygons - Illumination

► Brocard Polygons (only harmonic polygons) e.g. [Casey 1888, Dmitriev & Dynkin 1946, Bernhart 1959]

Brocard Polygons - Illumination

- ▶ Brocard Polygons (only harmonic polygons)
 e.g. [Casey 1888, Dmitriev & Dynkin 1946, Bernhart 1959]
- ▶ Brocard Illumination Brocard angle [Alegría et al. 2017] $O(n^3 \log^2 n)$ time, $O(n \log n)$ time convex polygons

Brocard Polygons - Illumination

- ▶ Brocard Polygons (only harmonic polygons)
 e.g. [Casey 1888, Dmitriev & Dynkin 1946, Bernhart 1959]
- ▶ Brocard Illumination Brocard angle [Alegría et al. 2017] $O(n^3 \log^2 n)$ time, $O(n \log n)$ time convex polygons

Floodlight Illumination

- ► Several variants/results, e.g. [Bose et al. 1993, Uruttia 2000]
- ▶ Uniform angle, e.g. [O'Rourke 1995, Toth 2002]

Brocard Polygons - Illumination

- Brocard Polygons (only harmonic polygons) e.g. [Casey 1888, Dmitriev & Dynkin 1946, Bernhart 1959]
- ► Brocard Illumination Brocard angle [Alegría et al. 2017] $O(n^3 \log^2 n)$ time, $O(n \log n)$ time convex polygons

Floodlight Illumination

- ► Several variants/results, e.g. [Bose et al. 1993, Uruttia 2000]
- ► Uniform angle, e.g. [O'Rourke 1995, Toth 2002]

Application - Domain coverage

▶ Directional Antennas or Surveillance Cameras [Berman et al. 2007, Kranakis et al. 2011, Neishaboori et al. 2014, Czyzowicz et al. 2015]

Table of Contents

Introduction

RVD Definitions & Properties

RVD in the Plane

RVD of a Convex Polygor

Angular distance - bisectors

Definition

Given a ray r and a point $x \in \mathbb{R}^2$, the angular distance from x to r, $d_{\angle}(x, r)$,

Angular distance - bisectors

Definition

Given a ray r and a point $x \in \mathbb{R}^2$, the angular distance from x to r, $d_{\angle}(x,r)$, is the minimum counterclockwise angle α from r to a ray with apex p(r) passing through x.

Angular distance - bisectors

Definition

Given a ray r and a point $x \in \mathbb{R}^2$, the angular distance from x to r, $d_{\angle}(x,r)$, is the minimum counterclockwise angle α from r to a ray with apex p(r) passing through x.

Definition

Given two rays r and s, their angular bisector, $b \angle (r, s)$, is the curve delimiting the points closer to r and the points closer to s.

Definition

Given a set of rays S.

Definition

Given a set of rays S. The Voronoi region of a ray $r \in S$ is:

$$vreg(r) := \{ x \in \mathbb{R}^2 \mid \forall s \in \mathcal{S} \setminus \{r\} : d_{\angle}(x,r) < d_{\angle}(x,s) \}.$$

Definition

Given a set of rays S. The Voronoi region of a ray $r \in S$ is:

$$vreg(r) := \{ x \in \mathbb{R}^2 \mid \forall s \in \mathcal{S} \setminus \{r\} : d_{\angle}(x,r) < d_{\angle}(x,s) \}.$$

Definition

Given a set of rays S. The Voronoi region of a ray $r \in S$ is:

$$vreg(r) := \{ x \in \mathbb{R}^2 \mid \forall s \in \mathcal{S} \setminus \{r\} : d_{\angle}(x,r) < d_{\angle}(x,s) \}.$$

The Rotating Rays Voronoi Diagram of S is the subdivision of \mathbb{R}^2 in Voronoi regions. RVD(S) is the graph structure of the diagram.

Properties

 $ightharpoonup \mathsf{RVD}(\mathcal{S})$ has different types of vertices and edges.

Properties

- $ightharpoonup \mathsf{RVD}(\mathcal{S})$ has different types of vertices and edges.
- ▶ A region can have many faces; exactly one is unbounded.

Properties

- ightharpoonup RVD(S) has different types of vertices and edges.
- ▶ A region can have many faces; exactly one is unbounded.
- ightharpoonup RVD(S) is connected.

Table of Contents

Introduction

RVD Definitions & Properties

RVD in the Plane

RVD of a Convex Polygor

Theorem

Given a set S of n rays RVD(S) has $\Omega(n^2)$ worst case complexity.

Theorem

Given a set S of n rays RVD(S) has $\Omega(n^2)$ worst case complexity.

Theorem

Given a set S of n rays RVD(S) has $\Omega(n^2)$ worst case complexity.

Theorem

Given a set S of n rays RVD(S) has $\Omega(n^2)$ worst case complexity. This is true even if the rays are pairwise non-intersecting.

Theorem

Given a set S of n rays RVD(S) has $\Omega(n^2)$ worst case complexity. This is true even if the rays are pairwise non-intersecting.

Theorem

Given a set S of n rays RVD(S) has $\Omega(n^2)$ worst case complexity. This is true even if the rays are pairwise non-intersecting.

Theorem

Given a set S of n rays RVD(S) has $\Omega(n^2)$ worst case complexity. This is true even if the rays are pairwise non-intersecting.

Region Complexity

Theorem

A region of RVD(S) has $\Theta(n^2)$ worst case complexity.

Region Complexity

Theorem

A region of RVD(S) has $\Theta(n^2)$ worst case complexity.

Region Complexity

Theorem

A region of RVD(S) has $\Theta(n^2)$ worst case complexity.

Region Complexity

Theorem

A region of RVD(S) has $\Theta(n^2)$ worst case complexity.

Theorem

Given a set S of n rays RVD(S) has $O(n^{2+\epsilon})$ complexity $\forall \epsilon > 0$.

▶ Lower envelopes of distance functions in 3-space [Sharir 1994].

Theorem

Given a set S of n rays RVD(S) has $O(n^{2+\epsilon})$ complexity $\forall \epsilon > 0$. Further, RVD(S) can be constructed in $O(n^{2+\epsilon})$ time.

▶ Lower envelopes of distance functions in 3-space [Sharir 1994].

Theorem

Given a set S of n rays RVD(S) has $O(n^{2+\epsilon})$ complexity $\forall \epsilon > 0$. Further, RVD(S) can be constructed in $O(n^{2+\epsilon})$ time.

▶ Lower envelopes of distance functions in 3-space [Sharir 1994].

Minimum angle α^* to illuminate \mathbb{R}^2

Theorem

Given a set S of n rays RVD(S) has $O(n^{2+\epsilon})$ complexity $\forall \epsilon > 0$. Further, RVD(S) can be constructed in $O(n^{2+\epsilon})$ time.

▶ Lower envelopes of distance functions in 3-space [Sharir 1994].

Minimum angle α^* to illuminate \mathbb{R}^2

- 1. Construct RVD(S). $O(n^{2+\epsilon})$ time.
- 2. Traverse $\mathsf{RVD}(\mathcal{S})$. Linear time.

Theorem

Given a set S of n rays RVD(S) has $O(n^{2+\epsilon})$ complexity $\forall \epsilon > 0$. Further, RVD(S) can be constructed in $O(n^{2+\epsilon})$ time.

▶ Lower envelopes of distance functions in 3-space [Sharir 1994].

Minimum angle α^* to illuminate \mathbb{R}^2

- 1. Construct RVD(S). $O(n^{2+\epsilon})$ time.
- 2. Traverse RVD(S). Linear time.

Table of Contents

Introduction

RVD Definitions & Properties

RVD in the Plane

RVD of a Convex Polygon

▶ Input: A convex polygon *P* with *n* vertices.

- ▶ Input: A convex polygon *P* with *n* vertices.
- ▶ Obtain a set of n edge-aligned rays S_P

- ▶ Input: A convex polygon *P* with *n* vertices.
- ▶ Obtain a set of n edge-aligned rays S_P
- ▶ Output: $PRVD(S_P) := RVD(S_P) \cap P$.

- ▶ Input: A convex polygon *P* with *n* vertices.
- ▶ Obtain a set of *n* edge-aligned rays S_P
- ▶ Output: $PRVD(S_P) := RVD(S_P) \cap P$.
- ▶ Output: Brocard angle of *P*.

Algorithm outline

- 1. Divide S_P into 4 sets of rays.
- 2. Construct the diagrams of the 4 sets.
- 3. Merge the 4 diagrams to obtain $PRVD(S_P)$.

Algorithm outline

- 1. Divide S_P into 4 sets of rays.
- 2. Construct the diagrams of the 4 sets.
- 3. Merge the 4 diagrams to obtain $PRVD(S_P)$.

Step 1.

Partition S_P into 4 sets S_N , S_W , S_S and S_E depending on the direction of the rays.

Constructing the 4 diagrams

Step. 2

For each S_d , $d \in \{N,W,S,E\}$:

Use Hamiltonian Abstract Voronoi Diagrams. [Klein 1989, Klein & Lingas 1994]

▶ For each $S' \subseteq S_d^r$ satisfy a set of axioms.

Constructing the 4 diagrams

Step. 2

For each S_d , $d \in \{N,W,S,E\}$: obtain a set S_d^r in which every ray of S_d is rotated by $-\pi/2$.

Use Hamiltonian Abstract Voronoi Diagrams. [Klein 1989, Klein & Lingas 1994]

▶ For each $S' \subseteq S_d^r$ satisfy a set of axioms.

Constructing the 4 diagrams

Step. 2

For each S_d , $d \in \{N,W,S,E\}$: obtain a set S_d^r in which every ray of S_d is rotated by $-\pi/2$.

Use Hamiltonian Abstract Voronoi Diagrams. [Klein 1989, Klein & Lingas 1994]

▶ For each $S' \subseteq S_d^r$ satisfy a set of axioms.

Lemma

 $\mathsf{RVD}(\mathcal{S}^r_d)$ is a tree of $\Theta(|\mathcal{S}^r_d|)$ complexity. $\mathsf{RVD}(\mathcal{S}^r_d)$ can be constructed in $\Theta(|\mathcal{S}^r_d|)$ time.

Step 3.a.

Merge $\mathsf{RVD}(\mathcal{S}_W^r)$ with $\mathsf{RVD}(\mathcal{S}_S^r)$

Step 3.a.

Merge $RVD(S_W^r)$ with $RVD(S_S^r)$ into $RVD(S_W^r \cup S_S^r)$.

Step 3.a.

Merge RVD(\mathcal{S}_W^r) with RVD(\mathcal{S}_S^r) into RVD($\mathcal{S}_W^r \cup \mathcal{S}_S^r$). Respectively RVD($\mathcal{S}_E^r \cup \mathcal{S}_N^r$).

Step 3.a.

Merge RVD(\mathcal{S}_W^r) with RVD(\mathcal{S}_S^r) into RVD($\mathcal{S}_W^r \cup \mathcal{S}_S^r$). Respectively RVD($\mathcal{S}_E^r \cup \mathcal{S}_N^r$).

Step 3.b.

Merge RVD($S_W^r \cup S_S^r$) with RVD($S_E^r \cup S_N^r$) confined into P. Obtain PRVD(S_P).

Step 3.a.

Merge RVD(\mathcal{S}_W^r) with RVD(\mathcal{S}_S^r) into RVD($\mathcal{S}_W^r \cup \mathcal{S}_S^r$). Respectively RVD($\mathcal{S}_E^r \cup \mathcal{S}_N^r$).

Step 3.b.

Merge RVD($S_W^r \cup S_S^r$) with RVD($S_E^r \cup S_N^r$) confined into P. Obtain PRVD(S_P).

Step 3.a.

Merge RVD(\mathcal{S}_W^r) with RVD(\mathcal{S}_S^r) into RVD($\mathcal{S}_W^r \cup \mathcal{S}_S^r$). Respectively RVD($\mathcal{S}_E^r \cup \mathcal{S}_N^r$). O(n) time

Step 3.b.

Merge RVD($S_W^r \cup S_S^r$) with RVD($S_E^r \cup S_N^r$) confined into P. Obtain PRVD(S_P). O(n) time

Theorem

 $PRVD(S_P)$ can be constructed $\Theta(n)$ time.

Theorem

 $PRVD(S_P)$ can be constructed $\Theta(n)$ time.

Brocard Illumination of P

- 1. Construct $PRVD(S_P)$. $\Theta(n)$ time.
- 2. Traverse $PRVD(S_P)$. $\Theta(n)$ time.

Theorem

 $PRVD(S_P)$ can be constructed $\Theta(n)$ time.

Brocard Illumination of P

- 1. Construct $PRVD(S_P)$. $\Theta(n)$ time.
- 2. Traverse PRVD(S_P). $\Theta(n)$ time.
- ▶ Three α^* -floodlights suffice.

Theorem

 $PRVD(S_P)$ can be constructed $\Theta(n)$ time.

Brocard Illumination of P

- 1. Construct $PRVD(S_P)$. $\Theta(n)$ time.
- 2. Traverse PRVD(S_P). $\Theta(n)$ time.
- ▶ Three α^* -floodlights suffice.
- $\sim \alpha^* \in (0, \pi/2 \pi/n].$

Summary and open questions

Summary

- RVD: definition, useful in Floodlight Illumination.
- ▶ RVD in \mathbb{R}^2 : properties, complexity & algorithm.
- ▶ Brocard Illumination of convex polygons: optimal $\Theta(n)$ time.

Summary and open questions

Summary

- RVD: definition, useful in Floodlight Illumination.
- ▶ RVD in \mathbb{R}^2 : properties, complexity & algorithm.
- ▶ Brocard Illumination of convex polygons: optimal $\Theta(n)$ time.

Open Questions

- ▶ Gap in the complexity of RVD(S) in \mathbb{R}^2 : $\Omega(n^2) O(n^{2+\epsilon})$
- Extend our approach to other classes of polygons.