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Brocard Illumination

Input: Polygon P with edge-aligned α-floodlights.
Goal: Minimum angle α∗ to illuminate P .
Approach: Define the Voronoi Diagram of Rotating Rays.
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Related Work

Brocard Polygons - Illumination
I Brocard Polygons (only harmonic polygons)

e.g. [Casey 1888, Dmitriev & Dynkin 1946, Bernhart 1959]

I Brocard Illumination - Brocard angle [Alegría et al. 2017]
O(n3 log2 n) time, O(n log n) time convex polygons

Floodlight Illumination
I Several variants/results, e.g. [Bose et al. 1993, Uruttia 2000]
I Uniform angle, e.g. [O’Rourke 1995, Toth 2002]

Application - Domain coverage
I Directional Antennas or Surveillance Cameras [Berman et al. 2007,

Kranakis et al. 2011, Neishaboori et al. 2014 ,Czyzowicz et al. 2015]
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Angular distance - bisectors

Definition
Given a ray r and a point x ∈ R2, the angular
distance from x to r , d∠(x , r),

is the minimum
counterclockwise angle α from r to a ray with
apex p(r) passing through x .

.
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Definition
Given two rays r and s, their angular bisector, b∠(r , s), is the curve
delimiting the points closer to r and the points closer to s.
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Rotating Rays Voronoi Diagram (RVD)

Definition
Given a set of rays S.

The Voronoi region of a ray r ∈ S is:

vreg(r) := { x ∈ R2 | ∀s ∈ S \ {r} : d∠(x , r) < d∠(x , s) }.

The Rotating Rays Voronoi Diagram of S is the subdivision of R2

in Voronoi regions. RVD(S) is the graph structure of the diagram.
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Properties

wv
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x

I RVD(S) has different types of vertices and edges.

I A region can have many faces; exactly one is unbounded.
I RVD(S) is connected.
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Diagram Complexity: Lower bound

Theorem
Given a set S of n rays RVD(S) has Ω(n2) worst case complexity.

This is true even if the rays are pairwise non-intersecting.
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Region Complexity

Theorem
A region of RVD(S) has Θ(n2) worst case complexity.
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Complexity upper bound & Algorithm

Theorem
Given a set S of n rays RVD(S) has O(n2+ε) complexity ∀ε > 0.

Further, RVD(S) can be constructed in O(n2+ε) time.

I Lower envelopes of distance functions in 3-space [Sharir 1994].

Minimum angle α∗ to illuminate R2

1. Construct RVD(S). O(n2+ε) time.
2. Traverse RVD(S). Linear time.
I α∗ ∈ (2π/n, 2π)
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Brocard Illumination of Polygon

I Input: A convex polygon P with n vertices.

I Obtain a set of n edge-aligned rays SP
I Output: PRVD(SP) := RVD(SP) ∩ P .
I Output: Brocard angle of P .



9/14

Brocard Illumination of Polygon

I Input: A convex polygon P with n vertices.
I Obtain a set of n edge-aligned rays SP

I Output: PRVD(SP) := RVD(SP) ∩ P .
I Output: Brocard angle of P .



9/14

Brocard Illumination of Polygon

I Input: A convex polygon P with n vertices.
I Obtain a set of n edge-aligned rays SP
I Output: PRVD(SP) := RVD(SP) ∩ P .

I Output: Brocard angle of P .



9/14

Brocard Illumination of Polygon

I Input: A convex polygon P with n vertices.
I Obtain a set of n edge-aligned rays SP
I Output: PRVD(SP) := RVD(SP) ∩ P .
I Output: Brocard angle of P .



10/14

Algorithm outline

1. Divide SP into 4 sets of rays.
2. Construct the diagrams of the 4 sets.
3. Merge the 4 diagrams to obtain PRVD(SP).

Step 1.
Partition SP into 4 sets SN ,SW ,
SS and SE depending on the
direction of the rays.

N
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Constructing the 4 diagrams

Step. 2
For each Sd , d ∈ {N,W,S,E}:

obtain a set Srd
in which every ray of Sd is rotated by −π/2.

Use Hamiltonian Abstract Voronoi Diagrams.
[Klein 1989, Klein & Lingas 1994]
I For each S ′ ⊆ Srd satisfy a set of axioms.

Lemma
RVD(Srd) is a tree of Θ(|Srd |) complexity.
RVD(Srd) can be constructed in Θ(|Srd |) time.

SS
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Step 3. Merging the 4 diagrams

Step 3.a.
Merge RVD(SrW ) with RVD(SrS)

into RVD(SrW ∪ SrS)

.

Respectively RVD(SrE ∪ SrN). O(n) time

Step 3.b.
Merge RVD(SrW ∪ SrS) with RVD(SrE ∪ SrN) confined into P .
Obtain PRVD(SP).

O(n) time
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Finding the Brocard angle

Theorem
PRVD(SP) can be constructed Θ(n) time.

Brocard Illumination of P
1. Construct PRVD(SP). Θ(n) time.
2. Traverse PRVD(SP). Θ(n) time.

I Three α∗-floodlights suffice.
I α∗ ∈ (0, π/2− π/n].
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Summary and open questions

Summary
I RVD: definition, useful in Floodlight Illumination.
I RVD in R2: properties, complexity & algorithm.
I Brocard Illumination of convex polygons: optimal Θ(n) time.

Open Questions
I Gap in the complexity of RVD(S) in R2: Ω(n2)− O(n2+ε)

I Extend our approach to other classes of polygons.
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