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Brocard Illumination

Input: Polygon P with edge-aligned a-floodlights.
Goal: Minimum angle o* to illuminate P.
Approach: Define the Voronoi Diagram of Rotating Rays.

o
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O(n®log? n) time, O(nlog n) time convex polygons

Floodlight Illumination

» Several variants/results, e.g. [Bose et al. 1993, Uruttia 2000]
» Uniform angle, e.g. [O'Rourke 1995, Toth 2002]

Application - Domain coverage

» Directional Antennas or Surveillance Cameras [Berman et al. 2007,
Kranakis et al. 2011, Neishaboori et al. 2014 ,Czyzowicz et al. 2015]
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Angular distance - bisectors

Ty 4
Definition /
Given a ray r and a point x € R?, the angular Ty
distance from x to r, d(x,r), is the minimum Ny r
counterclockwise angle o from r to a ray with ;
apex p(r) passing through x. p(r) d/(z,r) =«

Definition
Given two rays r and s, their angular bisector, b,(r, s), is the curve
delimiting the points closer to r and the points closer to s.
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Rotating Rays Voronoi Diagram (RVD)
Definition

Given a set of rays S. The Voronoi region of aray r € S is:

vreg(r) == {x €R? |Vs € S\ {r}: ds(x,r) < ds(x,s)}.

The Rotating Rays Voronoi Diagram of S is the subdivision of R?
in Voronoi regions. RVD(S) is the graph structure of the diagram.
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Properties

» RVD(S) has different types of vertices and edges.
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v
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Properties

» RVD(S) has different types of vertices and edges.

» A region can have many faces; exactly one is unbounded.
» RVD(S) is connected.

oAt /14



Table of Contents

RVD in the Plane



Diagram Complexity: Lower bound
Theorem

Given a set S of n rays RVD(S) has Q)(n?) worst case complexity.

Nt /14



Diagram Complexity: Lower bound
Theorem

Given a set S of n rays RVD(S) has Q)(n?) worst case complexity.

Nt /14



Diagram Complexity: Lower bound
Theorem

Given a set S of n rays RVD(S) has Q)(n?) worst case complexity.

Nt /14



Diagram Complexity: Lower bound

Theorem

Given a set S of n rays RVD(S) has Q)(n”) worst case complexity.
This is true even if the rays are pairwise non-intersecting.

Nt /14



Diagram Complexity: Lower bound

Theorem

Given a set S of n rays RVD(S) has Q)(n”) worst case complexity.
This is true even if the rays are pairwise non-intersecting.

Nt /14



Diagram Complexity: Lower bound

Theorem

Given a set S of n rays RVD(S) has Q)(n”) worst case complexity.
This is true even if the rays are pairwise non-intersecting.

Nt /14



Diagram Complexity: Lower bound

Theorem
Given a set S of n rays RVD(S) has Q)(n?) worst case complexity.
This is true even if the rays are pairwise non-intersecting.

6/14



Region Complexity

Theorem
A region of RVD(S) has ©(n?) worst case complexity.

7/14



Region Complexity

Theorem

A region of RVD(S) has ©(n”) worst case complexity.

it
it
v

et 714



Region Complexity

Theorem

A region of RVD(S) has ©(n”) worst case complexity.

et 714



Region Complexity

Theorem

A region of RVD(S) has ©(n”) worst case complexity.

||

et 714



Complexity upper bound & Algorithm

Theorem
Given a set S of n rays RVD(S) has O(n”") complexity Ve > 0.

» Lower envelopes of distance functions in 3-space [Sharir 1994].

8/14



Complexity upper bound & Algorithm

Theorem
Given a set S of n rays RVD(S) has O(n”") complexity Ve > 0.
Further, RVD(S) can be constructed in O(n”"<) time.

» Lower envelopes of distance functions in 3-space [Sharir 1994].

8/14



Complexity upper bound & Algorithm

Theorem
Given a set S of n rays RVD(S) has O(n”") complexity Ve > 0.
Further, RVD(S) can be constructed in O(n”"<) time.

» Lower envelopes of distance functions in 3-space [Sharir 1994].

Minimum angle o* to illuminate R?

8/14



Complexity upper bound & Algorithm

Theorem

Given a set S of n rays RVD(S) has O(n”") complexity Ve > 0.
Further, RVD(S) can be constructed in O(n”") time.

» Lower envelopes of distance functions in 3-space [Sharir 1994].

Minimum angle o to illuminate R?

1. Construct RVD(S). O(n?**) time.
2. Traverse RVD(S). Linear time.

et g/1a



Complexity upper bound & Algorithm

Theorem

Given a set S of n rays RVD(S) has O(n”") complexity Ve > 0.
Further, RVD(S) can be constructed in O(n”") time.

» Lower envelopes of distance functions in 3-space [Sharir 1994].

Minimum angle o to illuminate R?

1. Construct RVD(S). O(n?**) time.

2. Traverse RVD(S). Linear time.
» o* € (2n/n,2m)
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Brocard Illumination of Polygon

» Input: A convex polygon P with n vertices.
» Obtain a set of n edge-aligned rays Sp

» Output: PRVD(Sp) := RVD(Sp) N P.

» OQutput: Brocard angle of P.
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1. Divide Sp into 4 sets of rays.
2. Construct the diagrams of the 4 sets.
3. Merge the 4 diagrams to obtain PRVD(Sp).
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Algorithm outline

1. Divide Sp into 4 sets of rays.
2. Construct the diagrams of the 4 sets.
3. Merge the 4 diagrams to obtain PRVD(Sp).

Step 1.

Partition Sp into 4 sets Sy, Sw,
Ss and Sg depending on the
direction of the rays.
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Constructing the 4 diagrams
Step. 2

For each Sy, d € {N,W,S,E}:

Use Hamiltonian Abstract Voronoi Diagrams.
[Klein 1989, Klein & Lingas 1994]

» For each S’ C S satisfy a set of axioms.
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Constructing the 4 diagrams

Step. 2

For each Sy, d € {N,W,S,E}: obtain a set S}
in which every ray of Sy is rotated by —m/2.

Use Hamiltonian Abstract Voronoi Diagrams.
[Klein 1989, Klein & Lingas 1994]

» For each S’ C & satisfy a set of axioms.

Lemma
RVD(SY)) is a tree of O(|S)|) complexity.
RVD(S]) can be constructed in ©(|S]|) time.

u]
]
1
n
it
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Step 3. Merging the 4 diagrams
Step 3.a.

Merge RVD(Sy, ) with RVD(S¢)

et 12/14



Step 3. Merging the 4 diagrams
Step 3.a.

Merge RVD(Sy,,) with RVD(S¢) into RVD(S}, U S¢).

40> «F»r « =

et 12/14



Step 3. Merging the 4 diagrams
Step 3.a.
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Step 3.a.

Merge RVD(Sy,,) with RVD(S¢) into RVD(S}, U S¢).
Respectively RVD(SE U Sp).

Step 3.b.

Merge RVD(Sy, U S5) with RVD(SE U Sy) confined into P.
Obtain PRVD(Sp).
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Step 3. Merging the 4 diagrams

Step 3.a.

Merge RVD(Sy,,) with RVD(S¢) into RVD(S}, U S¢).
Respectively RVD(SE U Sf). O(n) time

Step 3.b.

Merge RVD(Sy, U S5) with RVD(SE U Sy) confined into P.
Obtain PRVD(Sp). O(n) time

u]
]
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PRVD(Sp) can be constructed ©(n) time.
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Finding the Brocard angle

Theorem
PRVD(Sp) can be constructed ©(n) time.

Brocard lllumination of P

1. Construct PRVD(Sp). ©(n) time.
2. Traverse PRVD(Sp). ©(n) time.
» Three a*-floodlights suffice.

» o € (0,7/2—7/n].
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Summary

» RVD: definition, useful in Floodlight lllumination.

» RVD in R?: properties, complexity & algorithm.

» Brocard Illumination of convex polygons: optimal ©(n) time.
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Summary and open questions

Summary

» RVD: definition, useful in Floodlight lllumination.

» RVD in R?: properties, complexity & algorithm.

» Brocard Illumination of convex polygons: optimal ©(n) time.

Open Questions

» Gap in the complexity of RVD(S) in R2%: Q(n?) — O(n?*€)
» Extend our approach to other classes of polygons.

[m]

=
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