The Voronoi Diagram of Rotating Rays

WITH APPLICATIONS TO FLOODLIGHT ILLUMINATION

C. Alegría, I. Mantas, E. Papadopoulou, M. Savić, H. Schrezenmaier, C. Seara, M. Suderland

Brocard Illumination Problem

α -floodlight

Problem

Given a polygon P with an α floodlight aligned at each edge, what is the **minimum angle** α^* needed to illuminate P? α^* is the **Brocard angle** of P.

Approach

We define the **Rotating Rays** Voronoi Diagram (RVD). The sites are **rays** and the distance is the **angular distance**. The Brocard angle is realized at a vertex of the RVD.

Angular Distance

The **angular distance** of a ray r to point x: $d_{\angle}(x,r)$.

Angular Bisector

The **angular bisector** of two rays r and s: $b \angle (r, s)$.

Rotating Rays Voronoi Diagram

The **Voronoi region** of $r \in \mathcal{S}$ is the locus of points closer to r. The Rotating Rays Voronoi Diagram of ${\cal S}$ is the subdivision of \mathbb{R}^2 in Voronoi regions.

Rotating Rays Voronoi Diagram in \mathbb{R}^2

Theorem

RVD(S) has $\Omega(n^2)$ worst case complexity even if the rays are non-intersecting.

Theorem

 $\text{RVD}(\mathcal{S})$ has $O(n^{2+\epsilon})$ complexity and it can be constructed in $O(n^{2+\epsilon})$ time.

Theorem

A single Voronoi region of RVD(\mathcal{S}) can have $\Theta(n^2)$ **complexity** in the worst case.

Rotating Rays Voronoi Diagram of a Convex Polygon

Input: Convex polygon P Obtain: Set of rays S_P Output: Diagram PRVD (S_P)

Algorithm outline

- 1. Parition S_P in 4 sets.
- 2. Construct each of the 4 diagrams.
- 3. Merge the 4 diagrams.

Theorem

 $PRVD(S_P)$ can be constructed in $\Theta(n)$ time.

Finding the Brocard angle

Brocard angle of polygon P

- 1. Create PRVD(\mathcal{S}_P)
- 2. Traverse PRVD(S_P)
- Three α^* -floodlights suffice
- $\bullet \alpha^* \in (0, \pi/2 \pi/n]$

Brocard angle of \mathcal{S} in \mathbb{R}^2

- 1. Create RVD(\mathcal{S})

2. Traverse RVD(\mathcal{S})

- α^* realized at vertex of RVD(\mathcal{S})
- $\bullet \alpha^* \in (2\pi/n, 2\pi)$