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Brocard Illumination Problem
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Problem
Given a polygon P with an α-
floodlight aligned at each edge,
what is the minimum angle α∗

needed to illuminate P?
α∗ is the Brocard angle of P .

Approach
We define the Rotating Rays
Voronoi Diagram (RVD).
The sites are rays and the dis-
tance is the angular distance.
The Brocard angle is realized at
a vertex of the RVD.

Angular Distance
The angular distance of a
ray r to point x: d∠(x, r).
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Angular Bisector
The angular bisector of

two rays r and s: b∠(r, s).
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Rotating Rays Voronoi Diagram
The Voronoi region
of r ∈ S is the locus
of points closer to r.
The Rotating Rays
Voronoi Diagram of
S is the subdivision of
R2 in Voronoi regions.

Rotating Rays Voronoi Diagram in R2

Theorem
RVD(S) has Ω(n2) worst case complexity
even if the rays are non-intersecting.

Theorem
A single Voronoi region of RVD(S) can have Θ(n2)
complexity in the worst case.

Theorem
RVD(S) has O(n2+ε)
complexity and it
can be constructed in
O(n2+ε) time.

Rotating Rays Voronoi Diagram of a Convex Polygon
Input: Convex polygon P Obtain: Set of rays SP Output: Diagram PRVD(SP ) Algorithm outline

1. Parition SP in 4 sets.

2. Construct each of the 4 diagrams.

3. Merge the 4 diagrams.

Theorem
PRVD(SP ) can be constructed in Θ(n) time.

Finding the Brocard angle

Brocard angle of polygon P

1. Create PRVD(SP )

2. Traverse PRVD(SP )

•Three α∗-floodlights suffice

•α∗ ∈ (0, π/2− π/n]

Brocard angle of S in R2

1. Create RVD(S)

2. Traverse RVD(S)

•α∗ realized at vertex of RVD(S)

•α∗ ∈ (2π/n, 2π)


